PhotosyntheticaPub Date : 2024-10-10eCollection Date: 2024-01-01DOI: 10.32615/ps.2024.034
C E Eze, K Winter, M Slot
{"title":"Vapor-pressure-deficit-controlled temperature response of photosynthesis in tropical trees.","authors":"C E Eze, K Winter, M Slot","doi":"10.32615/ps.2024.034","DOIUrl":"10.32615/ps.2024.034","url":null,"abstract":"<p><p>Rising temperatures can affect stomatal and nonstomatal control over photosynthesis, through stomatal closure in response to increasing vapor pressure deficit (VPD), and biochemical limitations, respectively. To explore the independent effects of temperature and VPD, we conducted leaf-level temperature-response measurements while controlling VPD on three tropical tree species. Photosynthesis and stomatal conductance consistently decreased with increasing VPD, whereas photosynthesis typically responded weakly to changes in temperature when a stable VPD was maintained during measurements, resulting in wide parabolic temperature-response curves. We have shown that the negative effect of temperature on photosynthesis in tropical forests across ecologically important temperature ranges does not stem from direct warming effects on biochemical processes but from the indirect effect of warming, through changes in VPD. Understanding the acclimation potential of tropical trees to elevated VPD will be critical to anticipate the consequences of global warming for tropical forests.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"318-325"},"PeriodicalIF":2.1,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622557/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotosyntheticaPub Date : 2024-09-30eCollection Date: 2024-01-01DOI: 10.32615/ps.2024.033
Z P Ye, S X Zhou, X L Yang, H J Kang, S H Duan, F B Wang
{"title":"Light curve parametrization of three rice (<i>Oryza sativa</i> L.) cultivars based on mechanistic models.","authors":"Z P Ye, S X Zhou, X L Yang, H J Kang, S H Duan, F B Wang","doi":"10.32615/ps.2024.033","DOIUrl":"10.32615/ps.2024.033","url":null,"abstract":"<p><p>This study aimed to assess variations in leaf gas-exchange characteristics, leaf pigment contents, and some intrinsic traits of photosynthetic pigment molecules in three rice cultivars (cv. JR3015, Wufengyou3015, and Jifengyou3015) using mechanistic models. The findings revealed that chlorophyll content varied significantly among the three cultivars, but not maximum electron transport rate. JR3015 had lower chlorophyll content but the highest eigen-absorption cross-section (σ<sub>ik</sub>) and the lowest minimum average life-time of photosynthetic pigment molecules in the excited state (τ<sub>min</sub>). Our results suggested that the highest σ<sub>ik</sub> and the lowest τ<sub>min</sub> in JR3015 facilitated its electron transport rate despite its lower leaf chlorophyll content. Furthermore, compared to Jifengyou3015 and Wufengyou3015, JR3015 had the lowest photosynthetic electron-use efficiency <i>via</i> PSII, which contributed to its lowest maximum net photosynthetic rate. These findings are important in selecting rice cultivars based on their differences in photosynthetic capacity.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"305-313"},"PeriodicalIF":2.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622559/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotosyntheticaPub Date : 2024-09-30eCollection Date: 2024-01-01DOI: 10.32615/ps.2024.036
U Schreiber
{"title":"Letter to the Editor.","authors":"U Schreiber","doi":"10.32615/ps.2024.036","DOIUrl":"10.32615/ps.2024.036","url":null,"abstract":"","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"314-317"},"PeriodicalIF":2.1,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622550/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotosyntheticaPub Date : 2024-09-18eCollection Date: 2024-01-01DOI: 10.32615/ps.2024.035
G Govindjee
{"title":"On the discovery of the two-light effect on chlorophyll <i>a</i> fluorescence: Quenching of chlorophyll <i>a</i> fluorescence of Photosystem II by Photosystem I light.","authors":"G Govindjee","doi":"10.32615/ps.2024.035","DOIUrl":"10.32615/ps.2024.035","url":null,"abstract":"","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"302-304"},"PeriodicalIF":2.1,"publicationDate":"2024-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622560/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotosyntheticaPub Date : 2024-08-30eCollection Date: 2024-01-01DOI: 10.32615/ps.2024.030
T R Ferreira, V P Sallin, B Cerri Neto, J Crasque, A Pires, P S Rodrigues, H Chisté, A B P Lima, J A Machado Filho, L O Arantes, J M S Lira, A R Falqueto, S Dousseau-Arantes
{"title":"Morphophysiological responses of black pepper to recurrent water deficit.","authors":"T R Ferreira, V P Sallin, B Cerri Neto, J Crasque, A Pires, P S Rodrigues, H Chisté, A B P Lima, J A Machado Filho, L O Arantes, J M S Lira, A R Falqueto, S Dousseau-Arantes","doi":"10.32615/ps.2024.030","DOIUrl":"10.32615/ps.2024.030","url":null,"abstract":"<p><p>This study investigated the effects of recurrent water deficit on drought tolerance traits in black pepper (<i>Piper nigrum</i> L.) 'Bragantina'. Plants were subjected to three cycles of water deficit followed by recovery periods. Water deficit reduced stomatal conductance, photosynthesis, transpiration, and water potential while increasing water-use efficiency. In addition, intercellular CO<sub>2</sub> concentration, leaf temperature, root starch, and adaptive morphological characteristics in leaves and roots increased. Despite these adaptations, plants did not recover vegetative growth after rehydration. The primary tolerance mechanisms observed included increased abaxial epidermis thickness, stomatal density, fine roots, periderm thickness, and starch accumulation in roots. Although gas exchange and leaf water potential were restored, vegetative growth did not fully recover. This study highlights the response of black pepper to recurrent water stress and the underlying mechanisms of its drought tolerance.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"292-301"},"PeriodicalIF":2.1,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622609/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotosyntheticaPub Date : 2024-08-23eCollection Date: 2024-01-01DOI: 10.32615/ps.2024.032
G Garab
{"title":"Letter to the Editor.","authors":"G Garab","doi":"10.32615/ps.2024.032","DOIUrl":"10.32615/ps.2024.032","url":null,"abstract":"","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"289-291"},"PeriodicalIF":2.1,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622548/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotosyntheticaPub Date : 2024-08-06eCollection Date: 2024-01-01DOI: 10.32615/ps.2024.028
Y F Zhang, H Cai, E T You, X Q Qiao, Z P Gao, G X Chen
{"title":"Physiological response to low-nitrogen stress and comprehensive evaluation in four rice varieties.","authors":"Y F Zhang, H Cai, E T You, X Q Qiao, Z P Gao, G X Chen","doi":"10.32615/ps.2024.028","DOIUrl":"10.32615/ps.2024.028","url":null,"abstract":"<p><p>Rice (<i>Oryza sativa</i> L.) research has rarely focused on the response to low-nitrogen stress in different subtypes previously and lacked a low-nitrogen tolerance evaluation system. Here, we investigated the physiological characteristics under moderate and low-nitrogen stress conditions in two <i>japonica</i> cultivars (NG46 and NG9108) and two <i>indica</i> cultivars (LYP9 and 9311). Using subordinate function analysis and principal component analysis, the low-nitrogen tolerance of four rice varieties was comprehensively evaluated; stomatal conductance, total carotenoid content, and nitrate reductase NR activity were taken as the low-nitrogen tolerance evaluation system. Among the four rice cultivars, NG46 and LYP9 had significant advantages in photosynthetic gas-exchange capacity, optimizing the balance between light-harvesting capacity, the ratio of reaction center inactivation, the magnitude of decrease in heat dissipation, and nitrogen-metabolism enzyme activities. The results investigated the physiological mechanisms of rice adaptation to low-nitrogen stress and offered a reliable method for assessing low-nitrogen tolerance in rice.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"252-262"},"PeriodicalIF":2.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622558/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotosyntheticaPub Date : 2024-07-31eCollection Date: 2024-01-01DOI: 10.32615/ps.2024.025
P Dąbrowski, Ł Jełowicki, Z M Jaszczuk, S Maihoub, J Wróbel, H M Kalaji
{"title":"Relationship between photosynthetic performance and yield loss in winter oilseed rape (<i>Brassica napus</i> L.) under frost conditions.","authors":"P Dąbrowski, Ł Jełowicki, Z M Jaszczuk, S Maihoub, J Wróbel, H M Kalaji","doi":"10.32615/ps.2024.025","DOIUrl":"10.32615/ps.2024.025","url":null,"abstract":"<p><p>Winter oilseed rape (<i>Brassica napus</i> L.), the principal oilseed crop in Europe, is notably vulnerable to spring frosts that can drastically reduce yields in ways that are challenging to predict with standard techniques. Our research focused on evaluating the efficacy of photosynthetic efficiency analysis in this crop and identifying specific chlorophyll fluorescence parameters severely impacted by frost, which could serve as noninvasive biomarkers for yield decline. The experiments were carried out in semi-controlled conditions with several treatments: a control, one day at -3°C, three days at -3°C, one day at -6°C, and three days at -6°C. We employed continuous-excitation and pulse-amplitude-modulation chlorophyll fluorescence measurements to assess plant sensitivity to frost. Also, plant gas exchange and chlorophyll content index measurements were performed. Certain parameters strongly correlated with final yield losses, thereby establishing a basis for developing new agricultural protocols to predict and mitigate frost damage in rapeseed crops accurately.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"240-251"},"PeriodicalIF":2.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622556/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794795","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotosyntheticaPub Date : 2024-07-30eCollection Date: 2024-01-01DOI: 10.32615/ps.2024.027
L M Wu, N H Lu
{"title":"Selenium improves wheat antioxidant capacity, photosynthetic capacity, and growth under cadmium stress.","authors":"L M Wu, N H Lu","doi":"10.32615/ps.2024.027","DOIUrl":"10.32615/ps.2024.027","url":null,"abstract":"<p><p>Cadmium stress (CS) induced the peroxide damage and inhibited wheat photosynthetic capacity and growth. Compared to CS, selenium (Se) application plus CS bolstered chlorophyll and carotenoid contents, photosynthetic rate, the maximum photochemical efficiency of PSII, the quantum yield of PSII photochemistry, and photochemical quenching, superoxide dismutase, catalase, ascorbate peroxidase, glutathione reductase, L-galactono-1,4-lactone dehydrogenase, and gamma-glutamylcysteine synthetase activities, ascorbic acid and glutathione contents, AsA/dehydroascorbic acid and GSH/oxidized glutathione, and decreased nonphotochemical quenching (q<sub>N</sub>), antioxidant biomarkers malondialdehyde and hydrogen peroxide contents, and electrolyte leakage (EL). At the same time, Se alone declined antioxidant biomarkers contents, q<sub>N</sub> and EL, and augmented the rest of the aforementioned indexes. Our research implied that Se upregulated wheat's antioxidant capacity. In this way, Se improved wheat photosynthetic performance and growth, especially for 10 μM sodium selenite (Na<sub>2</sub>SeO<sub>3</sub>). Consequently, 10 μM Na<sub>2</sub>SeO<sub>3</sub> may be considered a useful exogenous substance to reinforce wheat cadmium tolerance.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 3","pages":"232-239"},"PeriodicalIF":2.1,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11622546/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
PhotosyntheticaPub Date : 2024-06-27eCollection Date: 2024-01-01DOI: 10.32615/ps.2024.020
H R Ren, L Tao, J Ren, X C Ren
{"title":"Chlorophyll and growth performance of biological sand-fixing materials inoculated on sandy desert surface.","authors":"H R Ren, L Tao, J Ren, X C Ren","doi":"10.32615/ps.2024.020","DOIUrl":"10.32615/ps.2024.020","url":null,"abstract":"<p><p>Desert biocrusts play an important role in the control of desertification and artificial inoculation can promote the formation and development of biocrusts. Physiological and growth responses of biocrusts inoculated on desert surfaces were investigated to assess the effect of mixture ratio, inoculation times, and water supply under laboratory conditions. The application of biological sand-fixing material prepared by cultivated algae crust and polymeric composites in a 1:1 ratio accelerated the most accumulation of chlorophyll <i>a</i> in 0.55 mg kg<sup>-1</sup>, thickness in 3.06 mm, and fresh mass in 0.69 g cm<sup>-1</sup>, was the most beneficial to formation and development of artificial biocrust. The water supply and cultivation time always significantly promoted the growth and accumulation of chlorophyll <i>a</i> and biomass under artificial cultivation and inoculation treatments. Artificial inoculation of biological sand-fixing material can lead to the formation of desert biocrust, which provides an engineering application method for desertification control.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"62 2","pages":"213-220"},"PeriodicalIF":2.1,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11613831/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142801688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}