从光谱到产量:利用高光谱成像技术研究作物光合作用的进展。

IF 1.6 4区 生物学 Q2 PLANT SCIENCES
Photosynthetica Pub Date : 2025-07-08 eCollection Date: 2025-01-01 DOI:10.32615/ps.2025.012
D Panda, S Mohanty, S Das, J Senapaty, D B Sahoo, B Mishra, M J Baig, L Behera
{"title":"从光谱到产量:利用高光谱成像技术研究作物光合作用的进展。","authors":"D Panda, S Mohanty, S Das, J Senapaty, D B Sahoo, B Mishra, M J Baig, L Behera","doi":"10.32615/ps.2025.012","DOIUrl":null,"url":null,"abstract":"<p><p>Ensuring global food security requires noninvasive techniques for optimizing resource use and monitoring crop health. Hyperspectral imaging (HSI) enables the precise analysis of plant physiology by capturing spectral data across narrow bands. This review explores HSI's role in agriculture, particularly its integration with unmanned aerial vehicles, AI-driven analytics, and machine learning. These advancements allow real-time monitoring of photosynthesis, chlorophyll fluorescence, and carbon assimilation, linking spectral data to plant health and agronomic decisions. Key indicators such as solar-induced fluorescence and vegetation indices enhance crop stress detection. This work compares HSI-derived metrics in differentiating nutrient deficiencies, drought, and disease. Despite its potential, challenges remain in data standardization and spectral interpretation. This review discusses solutions such as molecular phenotyping and predictive modeling, for AI-driven precision agriculture. Addressing these gaps, HSI is poised to revolutionize farming, improve climate resilience, and ensure food security.</p>","PeriodicalId":20157,"journal":{"name":"Photosynthetica","volume":"63 2","pages":"196-233"},"PeriodicalIF":1.6000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319944/pdf/","citationCount":"0","resultStr":"{\"title\":\"From spectrum to yield: advances in crop photosynthesis with hyperspectral imaging.\",\"authors\":\"D Panda, S Mohanty, S Das, J Senapaty, D B Sahoo, B Mishra, M J Baig, L Behera\",\"doi\":\"10.32615/ps.2025.012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Ensuring global food security requires noninvasive techniques for optimizing resource use and monitoring crop health. Hyperspectral imaging (HSI) enables the precise analysis of plant physiology by capturing spectral data across narrow bands. This review explores HSI's role in agriculture, particularly its integration with unmanned aerial vehicles, AI-driven analytics, and machine learning. These advancements allow real-time monitoring of photosynthesis, chlorophyll fluorescence, and carbon assimilation, linking spectral data to plant health and agronomic decisions. Key indicators such as solar-induced fluorescence and vegetation indices enhance crop stress detection. This work compares HSI-derived metrics in differentiating nutrient deficiencies, drought, and disease. Despite its potential, challenges remain in data standardization and spectral interpretation. This review discusses solutions such as molecular phenotyping and predictive modeling, for AI-driven precision agriculture. Addressing these gaps, HSI is poised to revolutionize farming, improve climate resilience, and ensure food security.</p>\",\"PeriodicalId\":20157,\"journal\":{\"name\":\"Photosynthetica\",\"volume\":\"63 2\",\"pages\":\"196-233\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12319944/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Photosynthetica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.32615/ps.2025.012\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/1/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Photosynthetica","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.32615/ps.2025.012","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

确保全球粮食安全需要非侵入性技术来优化资源利用和监测作物健康。高光谱成像(HSI)能够通过捕获跨窄波段的光谱数据来精确分析植物生理学。本文探讨了HSI在农业中的作用,特别是它与无人机、人工智能驱动的分析和机器学习的结合。这些进步可以实时监测光合作用、叶绿素荧光和碳同化,将光谱数据与植物健康和农艺决策联系起来。太阳诱导荧光和植被指数等关键指标加强了作物胁迫检测。这项工作比较了hsi衍生的指标在区分营养缺乏,干旱和疾病。尽管具有潜力,但在数据标准化和光谱解释方面仍然存在挑战。本文讨论了人工智能驱动的精准农业的解决方案,如分子表型和预测建模。为了解决这些差距,HSI准备彻底改变农业,提高气候适应能力,并确保粮食安全。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

From spectrum to yield: advances in crop photosynthesis with hyperspectral imaging.

From spectrum to yield: advances in crop photosynthesis with hyperspectral imaging.

From spectrum to yield: advances in crop photosynthesis with hyperspectral imaging.

From spectrum to yield: advances in crop photosynthesis with hyperspectral imaging.

Ensuring global food security requires noninvasive techniques for optimizing resource use and monitoring crop health. Hyperspectral imaging (HSI) enables the precise analysis of plant physiology by capturing spectral data across narrow bands. This review explores HSI's role in agriculture, particularly its integration with unmanned aerial vehicles, AI-driven analytics, and machine learning. These advancements allow real-time monitoring of photosynthesis, chlorophyll fluorescence, and carbon assimilation, linking spectral data to plant health and agronomic decisions. Key indicators such as solar-induced fluorescence and vegetation indices enhance crop stress detection. This work compares HSI-derived metrics in differentiating nutrient deficiencies, drought, and disease. Despite its potential, challenges remain in data standardization and spectral interpretation. This review discusses solutions such as molecular phenotyping and predictive modeling, for AI-driven precision agriculture. Addressing these gaps, HSI is poised to revolutionize farming, improve climate resilience, and ensure food security.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Photosynthetica
Photosynthetica 生物-植物科学
CiteScore
5.60
自引率
7.40%
发文量
55
审稿时长
3.8 months
期刊介绍: Photosynthetica publishes original scientific papers and brief communications, reviews on specialized topics, book reviews and announcements and reports covering wide range of photosynthesis research or research including photosynthetic parameters of both experimental and theoretical nature and dealing with physiology, biophysics, biochemistry, molecular biology on one side and leaf optics, stress physiology and ecology of photosynthesis on the other side. The language of journal is English (British or American). Papers should not be published or under consideration for publication elsewhere.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信