{"title":"Length Bidisperse Carbon Nanotubes Dispersions in Thermotropic Liquid Crystals","authors":"V. Popa-Nita, S. Buček","doi":"10.1155/2012/750890","DOIUrl":"https://doi.org/10.1155/2012/750890","url":null,"abstract":"We study nematic liquid crystal driven alignment of carbon nanotubes dispersed in them. We extend the mesoscopic model presented in (P. Van der Schoot et al. 2008, V. Popa-Nita, and S. Kralj 2010) including the effect of length bidispersity of carbon nanotubes. The free energy of the mixture is written as the sum of the Doi free energy for lyotropic nematic ordering of the two carbon nanotubes types, the Landau-de Gennes free energy for the thermotropic ordering of liquid crystal, and the coupling term between liquid crystal molecules and carbon nanotubes. The phase ordering of the mixtures is analyzed as a function of volume fraction, the strength of coupling, and the temperature.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"62 1","pages":"1-7"},"PeriodicalIF":0.0,"publicationDate":"2012-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82237842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Analysis of a THz Metamaterial Structure with High Refractive Index at Two Frequencies","authors":"Zan Lu, B. Camps-Raga, N. Islam","doi":"10.1155/2012/206879","DOIUrl":"https://doi.org/10.1155/2012/206879","url":null,"abstract":"The concept of a single frequency band, single high-refractive-index metamaterial has been extended and applied in the design of dual frequency band, dual high-refractive-index metamaterials in the THz regime. The structure design consists of twenty five unit cells with a surface area of 250 um by 250 um and a thickness of 5 um. Each cell has metallic structures embedded in a polyimide substrate. The return loss (S-parameter) analysis shows two strong electric responses at two frequency ranges, and the extracted constitutive parameters suggested high values of simultaneous dielectric constant and permeability at these frequencies. Results retrieved from the S-parameters also show high refractive index values. A first peak refractive index of 61.83 was observed at a resonant frequency of 0.384 THz, and another peak refractive index of 19.2 was observed at the resonant frequency 1.416 THz. Analysis show that higher refractive index at the second resonance frequency band is achievable through redesign of the structures, and modifications could lead to a single structure with multiple frequency, multiple high-refractive-index metamaterials that can be put to practical use.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"120 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2012-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75606571","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Closed-Aperture Z-Scan Analysis for Nonlinear Media with Saturable Absorption and Simultaneous Third- and Fifth-Order Nonlinear Refraction","authors":"Xiangming Liu, Y. Tomita","doi":"10.1155/2012/161572","DOIUrl":"https://doi.org/10.1155/2012/161572","url":null,"abstract":"We present a theory of open- and closed-aperture Gaussian beam Z-scan for nonlinear optical materials with saturable absorption and high-order nonlinear refraction. We show that an approximate expression for a transmitted intensity through the nonlinear optical material is possible by means of the Adomian’s decomposition method and the thin film approximation. The theory is applied to semiconductor CdSe quantum dot-polymer nanocomposite films. It is shown that the theory well explains measured results of open- and closed-aperture transmittances in the Z-scan setup. It is also shown that the nanocomposite film possesses simultaneous third- and fifth-order nonlinear refraction as well as saturable absorption of a homogeneously broadened type.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"191 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2012-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80392788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Gallego, A. Márquez, M. Ortuño, C. Neipp, I. Pascual, A. Beléndez
{"title":"Zero Spatial Frequency Limit: Method to Characterize Photopolymers as Optical Recording Material","authors":"S. Gallego, A. Márquez, M. Ortuño, C. Neipp, I. Pascual, A. Beléndez","doi":"10.1155/2012/352681","DOIUrl":"https://doi.org/10.1155/2012/352681","url":null,"abstract":"Photopolymers are useful for different holographic applications such as holographic data storage or diffractive optical elements. However, due to the presence of two different phenomena, polymer formation and monomer diffusion, it is difficult to characterize each parameter independently. We propose a direct method based on zero spatial frequency recording, to eliminate the diffusion influence, and on interferometric techniques, both in transmission and in reflection, to obtain quantitative values of shrinkage, polymerization rate, polymer refractive index and relation between intensity and polymerization, and so forth, This method has been implemented in the Holography and Optical Processing Group from the University of Alicante to characterize different photopolymers. In this paper, we present a compilation of the results obtained with this method for different photopolymers and we compare their characteristics.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"504 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2012-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86834612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A Review of the Optimisation of Photopolymer Materials for Holographic Data Storage","authors":"Jinxin Guo, M. R. Gleeson, J. Sheridan","doi":"10.1155/2012/803439","DOIUrl":"https://doi.org/10.1155/2012/803439","url":null,"abstract":"Photopolymers are very interesting as optically sensitive recording media due to the fact that they are inexpensive, self-processing materials with the ability to capture low-loss, high-fidelity volume recordings of 3D illuminating patterns. We have prepared this paper in part in order to enable the recognition of outstanding issues, which limit in particular the data storage capacity in holographic data storage media. In an attempt to further develop the data storage capacity and quality of the information stored, that is, the material sensitivity and resolution, a deeper understanding of such materials in order to improve them has become ever more crucial. In this paper a brief review of the optimisation of photopolymer materials for holographic data storage (HDS) applications is described. The key contributions of each work examined and many of the suggestions made for the improvement of the different photopolymer material discussed are presented.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"35 1","pages":"1-16"},"PeriodicalIF":0.0,"publicationDate":"2012-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87491144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Optical Second Harmonic Generation Microscopy as a Tool of Material Diagnosis","authors":"H. Yokota, J. Kaneshiro, Y. Uesu","doi":"10.1155/2012/704634","DOIUrl":"https://doi.org/10.1155/2012/704634","url":null,"abstract":"The second harmonic generation microscope (SHGM) constructs images of intensity distributions of SH waves produced by the interaction of fundamental waves with a polar material. We have developed this nonlinear optical microscope in order to make possible nondestructive, three-dimensional (3D) observations of various kinds of inorganic and organic materials. The SHGM can disclose also inverted domain structures of antiparallel spontaneous polarizations using the interference with the reference SH waves. The observation principle and several applications to structural characterizations of LiNbO3 and LiTaO3 quasi-phase matching devices, domain structure analyses of a relaxor/ferroelectric solid solution Pb(Zn1/3Nb2/3)O3-9%PbTiO3 at the morphotropic phase boundary, development of order parameter in a quantum paraelectric relaxor Li-doped KTaO3, and antiphase polar domain structures of muscle fibers and myofibrils are surveyed by stressing the high effectiveness of the SHGM as a tool of material diagnosis.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"8 1","pages":"1-12"},"PeriodicalIF":0.0,"publicationDate":"2012-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91108702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced Magnetic Materials","authors":"A. Zhukov, M. Inoue, M. Phan, V. Shavrov","doi":"10.1155/2012/385396","DOIUrl":"https://doi.org/10.1155/2012/385396","url":null,"abstract":"","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"42 11","pages":"1-2"},"PeriodicalIF":0.0,"publicationDate":"2012-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91505265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Murzina, A. Maydykovskiy, A. Gavrilenko, V. Gavrilenko
{"title":"Optical Second Harmonic Generation in Semiconductor Nanostructures","authors":"T. Murzina, A. Maydykovskiy, A. Gavrilenko, V. Gavrilenko","doi":"10.1155/2012/836430","DOIUrl":"https://doi.org/10.1155/2012/836430","url":null,"abstract":"Optical second harmonic generation (SHG) studies of semiconductor nanostructures are reviewed. The second-order response data both predicted and observed on pure and oxidised silicon surfaces, planar Si(001)/SiO2 heterostructures, and the results related to the direct-current-and strain-induced effects in SHG from the silicon surfaces as well are discussed. Remarkable progress in understanding the unique capabilities of nonlinear optical second harmonic generation spectroscopy as an advanced tool for nanostructures diagnostics is demonstrated.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"6 1","pages":"1-11"},"PeriodicalIF":0.0,"publicationDate":"2012-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80212946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microscopic Theory of Multipole Ordering in -Electron Systems","authors":"T. Hotta, T. Hotta","doi":"10.1155/2012/762798","DOIUrl":"https://doi.org/10.1155/2012/762798","url":null,"abstract":"A microscopic framework to determine multipole ordering in -electron systems is provided on the basis of the standard quantum field theory. For the construction of the framework, a seven-orbital Hubbard Hamiltonian with strong spin-orbit coupling is adopted as a prototype model. A type of multipole and ordering vector is determined from the divergence of multipole susceptibility, which is evaluated in a random phase approximation. As an example of the application of the present framework, a multipole phase diagram on a three-dimensional simple cubic lattice is discussed for the case of , where n denotes the average -electron number per site. Finally, future problems concerning multipole ordering and fluctuations are briefly discussed.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"48 14 1","pages":"1-9"},"PeriodicalIF":0.0,"publicationDate":"2012-05-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77786938","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Magnetic and Magnetoelectric Properties of Rare Earth Molybdates","authors":"B. K. Ponomarev, A. Zhukov","doi":"10.1155/2012/276348","DOIUrl":"https://doi.org/10.1155/2012/276348","url":null,"abstract":"We present results on ferroelectric, magnetic, magneto-optical properties and magnetoelectric effect of rare earth molybdates (gadolinium molybdate, GMO, and terbium molybdate, TMO, and samarium molybdate, SMO), belonging to a new type of ferroelectrics predicted by Levanyuk and Sannikov. While cooling the tetragonal β-phase becomes unstable with respect to two degenerate modes of lattice vibrations. The β-β′ transition is induced by this instability. The spontaneous polarization appears as a by-product of the lattice transformation. The electric order in TMO is of antiferroelectric type. Ferroelectric and ferroelastic GMO and TMO at room temperature are paramagnets. At low temperatures GMO and TMO are antiferromagnetic with the Neel temperatures K (GMO) and K (TMO). TMO shows the spontaneous destruction at 40 kOe magnetic field. Temperature and field dependences of the magnetization in TMO are well described by the magnetism theory of singlets at 4.2 K ≤ T ≤ 30 K. The magnetoelectric effect in SMO, GMO and TMO, the anisotropy of magnetoelectric effect in TMO at T = (1.8–4.2) K, the Zeeman effect in TMO, the inversion of the electric polarization induced by the laser beam are discussed. The correlation between the magnetic moment of rare earth ion and the magnetoelectric effect value is predicted. The giant fluctuations of the acoustic resonance peak intensity near the Curie point are observed.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"7 1","pages":"1-22"},"PeriodicalIF":0.0,"publicationDate":"2012-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80286176","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}