{"title":"具有饱和吸收和三阶和五阶非线性折射的非线性介质的闭孔径z扫描分析","authors":"Xiangming Liu, Y. Tomita","doi":"10.1155/2012/161572","DOIUrl":null,"url":null,"abstract":"We present a theory of open- and closed-aperture Gaussian beam Z-scan for nonlinear optical materials with saturable absorption and high-order nonlinear refraction. We show that an approximate expression for a transmitted intensity through the nonlinear optical material is possible by means of the Adomian’s decomposition method and the thin film approximation. The theory is applied to semiconductor CdSe quantum dot-polymer nanocomposite films. It is shown that the theory well explains measured results of open- and closed-aperture transmittances in the Z-scan setup. It is also shown that the nanocomposite film possesses simultaneous third- and fifth-order nonlinear refraction as well as saturable absorption of a homogeneously broadened type.","PeriodicalId":20143,"journal":{"name":"Physics Research International","volume":"191 1","pages":"1-9"},"PeriodicalIF":0.0000,"publicationDate":"2012-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Closed-Aperture Z-Scan Analysis for Nonlinear Media with Saturable Absorption and Simultaneous Third- and Fifth-Order Nonlinear Refraction\",\"authors\":\"Xiangming Liu, Y. Tomita\",\"doi\":\"10.1155/2012/161572\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We present a theory of open- and closed-aperture Gaussian beam Z-scan for nonlinear optical materials with saturable absorption and high-order nonlinear refraction. We show that an approximate expression for a transmitted intensity through the nonlinear optical material is possible by means of the Adomian’s decomposition method and the thin film approximation. The theory is applied to semiconductor CdSe quantum dot-polymer nanocomposite films. It is shown that the theory well explains measured results of open- and closed-aperture transmittances in the Z-scan setup. It is also shown that the nanocomposite film possesses simultaneous third- and fifth-order nonlinear refraction as well as saturable absorption of a homogeneously broadened type.\",\"PeriodicalId\":20143,\"journal\":{\"name\":\"Physics Research International\",\"volume\":\"191 1\",\"pages\":\"1-9\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physics Research International\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2012/161572\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics Research International","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2012/161572","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Closed-Aperture Z-Scan Analysis for Nonlinear Media with Saturable Absorption and Simultaneous Third- and Fifth-Order Nonlinear Refraction
We present a theory of open- and closed-aperture Gaussian beam Z-scan for nonlinear optical materials with saturable absorption and high-order nonlinear refraction. We show that an approximate expression for a transmitted intensity through the nonlinear optical material is possible by means of the Adomian’s decomposition method and the thin film approximation. The theory is applied to semiconductor CdSe quantum dot-polymer nanocomposite films. It is shown that the theory well explains measured results of open- and closed-aperture transmittances in the Z-scan setup. It is also shown that the nanocomposite film possesses simultaneous third- and fifth-order nonlinear refraction as well as saturable absorption of a homogeneously broadened type.