Elif Sevgi Sicim, Ozan Aydin, Feridun Ay, Nihan Kosku Perkgöz
{"title":"Investigation of CVD Growth of 2D MoS2 on MXene Structures with Photoluminescence Mapping and Fluorescence Lifetime Imaging Microscopy","authors":"Elif Sevgi Sicim, Ozan Aydin, Feridun Ay, Nihan Kosku Perkgöz","doi":"10.1002/pssb.202300242","DOIUrl":"https://doi.org/10.1002/pssb.202300242","url":null,"abstract":"Molybdenum disulfide (MoS2) and molybdenum carbide (Mo2C) are 2D materials with unique properties that make them suitable for electronic and optoelectronic applications. MoS2 is known for its high optical quantum yield and strong light–matter interaction, while Mo2C has metallic properties and is a member of the relatively new class of 2D materials called MXenes. In this research, a new heterostructure is obtained by growing MoS2 directly on Mo2C for the first time using chemical vapor deposition method. This novel hybrid structure changes the interlayer interaction and excited‐state dynamics, thereby increasing material diversity. The structure is characterized using Raman spectroscopy and atomic force microscopy, while photoluminescence (PL) and fluorescence lifetime imaging microscopy measurements are used to examine exciton motions. This study shows that the thickness of the hybrid structure is directly proportional to the frequency difference between the E2g and A1g modes, and inversely proportional to the PL intensities. The hybrid structure displays distinct exciton transitions due to the metallic effect and a longer fluorescence lifetime when compared to the bare monolayer of MoS2. The introduction of this novel hybrid structure with its optical properties holds great potential in opening up new avenues for optoelectronic device applications.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"21 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75020480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joginder Singh, Astha Singh, Nouf H. Alotaibi, Ghazanfar Nazir, C. Lal, S. Dar
{"title":"A Computational Understanding of Electronic, Magnetic, Mechanical, Thermoelectric, and Thermodynamic Properties of Rhodium‐Based Full‐Heusler Alloys Rh2MnX (X = Sc, Ti, Zr)","authors":"Joginder Singh, Astha Singh, Nouf H. Alotaibi, Ghazanfar Nazir, C. Lal, S. Dar","doi":"10.1002/pssb.202300168","DOIUrl":"https://doi.org/10.1002/pssb.202300168","url":null,"abstract":"The present investigation has been carried to know the magnetic talent, mechanical strength, thermoelectric transport properties, and thermal results on Rh2MnX (X = Sc, Ti, Zr) full‐Heusler alloys. The structural investigation presents these alloys to be stable in 225 (Fm‐3m) cubic space group. Electronic results characterize these alloys as metallic in both spin channels. From elastic data results, these compounds are found to be mechanically stable in cubic space group. The mechanical study shows ductile nature for Rh2MnSc while it is brittle for Rh2MnTi and Rh2MnZr. The large value of bulk modulus for these compounds presents their stiffer resistance. The temperature‐dependent thermoelectric transport properties for these materials are calculated. The increasing nature of Ke/τ for all the three compounds presents their conducting nature. Increasing value of power factor with temperature advocates the use of these materials for high‐temperature thermoelectric devices. All the three materials present a large value of total magnetic moment greater than 4 μB and hence can contribute to advanced magnetic materials. The thermodynamic investigation is carried out using Gibbs2 program.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"42 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"91182890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samiha Dergal, H. Rached, A. Ait Belkacem, Hanane Saib, Tarik Hadji, Ahmed Azzouz Rached
{"title":"First‐Principles Calculation of the Half‐Metallicity in the d0–d Half‐Heusler KCrSb Compound: Novel Material for Energy and Spintronic Applications","authors":"Samiha Dergal, H. Rached, A. Ait Belkacem, Hanane Saib, Tarik Hadji, Ahmed Azzouz Rached","doi":"10.1002/pssb.202300024","DOIUrl":"https://doi.org/10.1002/pssb.202300024","url":null,"abstract":"In this study, the structural, electronic, magnetic, mechanical, and dynamical properties of the new d0–d half‐Heusler (d0–d HH) KCrSb compound are investigated using spin‐polarized first‐principles calculations. Two distinct approaches are used: generalized gradient approximation (GGA) and the modified version of the Becke–Johnson GGA (mBJ–GGA). The stability investigations reveal an energetically, mechanically, and dynamically stable d0–d HH KCrSb. The magneto‐electronic research shows a stable compound in the ferromagnetic state with a half‐metallic behavior. The half‐metallic gap is 0.9 and 1.2 eV from GGA and mBJ‐GGA, respectively. It is found that the magnetic moment of the compound is an integer and follows the Slater–Pauling rule MT=(ZT−8)$M_{text{T}} = left(right. Z_{text{T}} - 8 left.right) left(muright)_{text{B}}$μB. So, the d0–d HH KCrSb compound is a potential candidate for spintronic and optoelectronic devices.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"17 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"83241251","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insights on Elastic Anisotropy and Thermal Properties of Mg–Ti–O Compounds from First‐Principles Calculations","authors":"Jianwei Ma, Yu Zhang, Zhi-Gang Fan, Q. Wei, Jian‐Ping Zhou","doi":"10.1002/pssb.202300165","DOIUrl":"https://doi.org/10.1002/pssb.202300165","url":null,"abstract":"First‐principles calculations are employed to explore the elastic anisotropy and thermal properties of Mg–Ti–O compounds (MgTiO3, MgTi2O5, and Mg2TiO4). The structure parameters used in this work are in good agreement with other theoretical and experimental results. The mechanical stability and ductile nature are demonstrated. The elastic anisotropy is characterized by different anisotropy indexes, three‐dimensional (3D) surface constructions, and two‐dimensional (2D) projections of Young's modulus. Besides, the sound velocities, Debye temperature, and minimum thermal conductivity are also investigated from the elastic modulus. The obtained results can provide references for future experimental investigations and engineering applications of these Mg–Ti–O compounds.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"57 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82843223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kumari Prajakta, V. P. Vinturaj, Rohit Singh, Vivek Garg, S. Pandey, S. K. Pandey
{"title":"Effect of Introducing Defects and Doping on Different Properties of Monolayer MoS2","authors":"Kumari Prajakta, V. P. Vinturaj, Rohit Singh, Vivek Garg, S. Pandey, S. K. Pandey","doi":"10.1002/pssb.202300017","DOIUrl":"https://doi.org/10.1002/pssb.202300017","url":null,"abstract":"Herein, the comprehensive study of different properties of undoped MoS2, MoS2 lattice with sulfur (S) and, molybdenum (Mo) vacancy, and MoS2 with substitutional doping of niobium (Nb), vanadium (V), and zinc (Zn) atoms is done. The density functional theory (DFT) is used and the electronic properties like density of states, band structure, electron density, and optical properties like dielectric function, optical conductivity, and refractive index are studied. It is observed that undoped MoS2 monolayer shows direct bandgap semiconductor characteristics with a bandgap of around 1.79 eV. P‐type characteristics are observed for Nb‐, V‐, and Zn‐doped MoS2 lattices. The real part and imaginary parts of all optical parameters along x and z directions for different MoS2 supercells are found to be anisotropic in nature up to a photon energy of almost 11 eV and thereafter they show nearly isotropic nature. Finally, it is found that the obtained properties of MoS2 monolayer as per literature are suitable for next‐generation MOSFET application.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"2 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75326247","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Elastic, Optical, and Thermoelectric Properties of 2D Square Lattice and Hexagonal Zinc Chalcogenides under First‐Principles Calculations","authors":"Pankaj Kumar, D. R. Roy","doi":"10.1002/pssb.202300046","DOIUrl":"https://doi.org/10.1002/pssb.202300046","url":null,"abstract":"Herein, elastic, optical, and thermoelectric properties of zinc chalcogenides with 2D square lattice and hexagonal phases [s‐ and h‐ZnX (X = GrVI)] are reported. The s‐ZnX and h‐ZnX structures are achieved to be dynamically stable, according to the phonon dispersion studies. All s‐ and h‐ZnX compounds are found to be semiconductor, with direct and indirect bandgaps ranging from 0.81 to 2.77 eV under PBE and 1.70 to 4.15 eV by HSE06 calculations. The effective mass, mobility, and relaxation time of electron and hole carriers in the band structures of s‐ and h‐ZnX are investigated to gain a better insight of these materials. In addition to the phonon dispersion analysis, their mechanical stability in terms of elastic properties is evaluated, and the resulting elastic parameters validate their mechanical stability. The optical properties of s‐ and h‐ZnX are inspected in the occurrence of field polarizations across parallel and perpendicular directions. At room temperature, s‐ZnTe compound has an optimum figure of merit (ZT) value, indicating it as the superlative thermoelectric material in the entire series. These compounds may also be explored in ultraviolet lasers, solar cells, electronic image displays, high‐density optical memory, photodetectors, and solid‐state laser devices.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"404 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79748049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Mohammed, J. Mohammed, S. Godara, P. Maji, Pawandeep Kaur, A. K. Srivastava
{"title":"Synthesis, Characterization and Electromagnetic Properties of Ba1.8Sr0.2Co2Fe11.9Pr0.1O22/Ti3C2Tx‐MXene Composites","authors":"I. Mohammed, J. Mohammed, S. Godara, P. Maji, Pawandeep Kaur, A. K. Srivastava","doi":"10.1002/pssb.202300149","DOIUrl":"https://doi.org/10.1002/pssb.202300149","url":null,"abstract":"","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"12 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88488624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Symmetry‐Based Model Hamiltonians for Topological Analysis of 2D Materials with Square Lattice","authors":"Chani Stella van Niekerk, R. Warmbier","doi":"10.1002/pssb.202300018","DOIUrl":"https://doi.org/10.1002/pssb.202300018","url":null,"abstract":"Classes of symmetry‐based model Hamiltonians can be constructed with specific point group restrictions. These models combine the flexibility of tight‐binding models with the analytical simplicity of the Su–Schrieffer–Heeger model and can be scaled in either direction. The applicability of models with two, three, and four bands to topological analysis is investigated and limitations to describing topological behaviour are assessed. The models are applied to fitting density functional theory (DFT) band structures for selected 2D materials with and without spin–orbit coupling. Suitable parameters for selected materials are obtained and used to describe the topological phase of the materials. Based on these results, a single two‐, three‐, and four‐band model is found which describes the band structure and topological properties of all the selected 2D materials. Suitable simplifications to the models are outlined to further illustrate how the analyzability can be scaled with the accuracy of the model. While generally a higher degree of symmetry helps the formation of topological phases, extremely symmetric point groups like D 4h $D_{text{4h}}$ restrict the allowed interactions to a degree that makes topological phases less easy to achieve.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"14 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77090887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Theoretical Study of Some Properties of High‐Temperature Two‐Band Model Iron‐Based Superconductor Ba1−xRbxFe2As2","authors":"Derejaw Gardew, G. Kahsay, T. Negussie","doi":"10.1002/pssb.202300160","DOIUrl":"https://doi.org/10.1002/pssb.202300160","url":null,"abstract":"This work focuses on the theoretical investigations of some properties of high‐temperature two‐band model iron‐based superconductor Ba1−xRbxFe2As2. The mathematical expressions of superconducting parameters are treated by the temperature‐dependent Green's function formalism. The superconducting order parameters of the material for electron, hole bands and for the interband are plotted as a function of temperature. The parameters decrease with increasing temperature and vanish at the superconducting transition temperature (Tc) of Ba1−xRbxFe2As2. The values of the superconducting order parameters and coupling strength in electron intraband, hole intraband, and the electron–hole interband are computed quantitatively. It is found that the pairing potential of Ba1−xRbxFe2As2 increases as a function of temperature. The phase diagrams of temperature‐dependent electron and hole intrabands and density of states versus excitation energy are plotted and it is observed that both decrease as the excitation energy increases. The impacts of temperature, pairing potential, and transitional temperature on condensation energy are also investigated and the results show that condensation energy decreases with the increase of temperature and pairing potential and vanishes at Tc of Ba1−xRbxFe2As2. Furthermore, the density of states is plotted for electron and hole‐intrabands at different temperatures versus excitation energy, and it is perceived that the density of states decreased gradually as the excitation energy increases and vanished at low‐temperature values. The current results are compatible with previous findings.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"25 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82199822","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nils Mengel, Lukas Gümbel, P. Klement, M. Fey, C. Fuchs, K. Volz, Sangam Chatterjee, M. Stein
{"title":"The Influence of Internal Interfaces on Charge‐Carrier Diffusion in Semiconductor Heterostructures","authors":"Nils Mengel, Lukas Gümbel, P. Klement, M. Fey, C. Fuchs, K. Volz, Sangam Chatterjee, M. Stein","doi":"10.1002/pssb.202300103","DOIUrl":"https://doi.org/10.1002/pssb.202300103","url":null,"abstract":"The ongoing miniaturization of semiconductor devices renders charge‐carrier transport along interfaces increasingly important. The characteristic length scales in state‐of‐the‐art semiconductor technology span only a few nanometers. Consequently, charge‐carrier transport inevitably occurs directly at interfaces between adjacent layers rather than being confined to a single material. Herein, charge‐carrier diffusion is systematically studied in prototypical active layer systems, namely, in type‐I direct‐gap quantum wells and in type‐II heterostructures. The impact of internal interfaces is revealed in detail as charge‐carrier diffusion takes place much closer to or even across the internal interfaces in type‐II heterostructures. Type‐I quantum wells and type‐II heterostructures exhibit comparable diffusion rates given similar inhomogeneous exciton linewidths. Consequently, the changes in the structural quality of the interfaces are responsible for changes in diffusion and charge‐carrier transport along interfaces rather than the existence of the interfaces themselves.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":"32 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77294001","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}