physica status solidi (b)最新文献

筛选
英文 中文
Activation Energy of DC Hopping Conductivity of Lightly Doped Weakly Compensated Crystalline Semiconductors 轻掺杂弱补偿晶体半导体直流跳变电导的活化能
physica status solidi (b) Pub Date : 2024-08-08 DOI: 10.1002/pssb.202400132
N. Poklonski, I. I. Anikeev, S. A. Vyrko, A. Zabrodskii
{"title":"Activation Energy of DC Hopping Conductivity of Lightly Doped Weakly Compensated Crystalline Semiconductors","authors":"N. Poklonski, I. I. Anikeev, S. A. Vyrko, A. Zabrodskii","doi":"10.1002/pssb.202400132","DOIUrl":"https://doi.org/10.1002/pssb.202400132","url":null,"abstract":"A model is proposed for calculating the thermal activation energy of direct current hopping conductivity via nearest neighbors in lightly doped and weakly compensated crystalline semiconductors with hydrogen‐like impurities. The temperature region is considered in which hops of single holes occur only between acceptors randomly distributed over the crystal (or hops of single electrons only between donors). The model is based on the idea of the Coulomb blockade of charge carriers by the field of compensating impurities (trap impurities). The hopping length of a hole between acceptors (or an electron between donors) is assumed to be equal to the critical (percolation) radius of the spherical region per a majority (doping) impurity atom. At a critical radius, an infinite cluster connecting ohmic contacts is formed in the crystal, along which charge carriers move in a hopping manner via majority impurities. The value of is defined as average work on overcoming the electrostatic Coulomb blockade by a charge carrier and its hopping via the electrically conducting cluster to “infinity”. The results of calculating by the proposed model of the Coulomb blockade for the most well‐studied bulk germanium and silicon p‐ and n‐type crystals are consistent with known experimental data.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141926341","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect 基于具有簇状残留效应的电化学金属化晶体管的学习模型
physica status solidi (b) Pub Date : 2024-07-16 DOI: 10.1002/pssb.202400170
Quanhai Sun, Guanyu Chen
{"title":"Learning Model Based on Electrochemical Metallization Memristor with Cluster Residual Effect","authors":"Quanhai Sun, Guanyu Chen","doi":"10.1002/pssb.202400170","DOIUrl":"https://doi.org/10.1002/pssb.202400170","url":null,"abstract":"\u0000Although a memristor model, subjected to electrochemical metallization mechanism, has been proposed based on the spontaneous decay of clusters in the previous work, it does not agree with the human forgetting accurately. Therefore, an improved model is meaningfully presented for the memristor with the cluster spontaneous decay by adding the residual effect. The former is due to the inward contraction of atoms driven by surface energy, while the latter is because of the balance of attractive and repulsive forces between atoms. The model fits well with the actual device. The forgetting is caused by the spontaneous decay. Memory retention is generated due to the added effect, which is also the internal cause of good agreement with the actual forgetting. Additionally, short‐term plasticity is converted to long‐term plasticity through the repeated learning. The efficiency of experiential learning using this model is much higher than that using the previous. It is shown that the physical mechanism of spontaneous decay in the cluster‐based channel is different from that in vacancy‐based or atom‐based channel. The model working under a non‐ideal condition with the temperature influence is discussed. Potential applications based on the model are stated.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141641503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extending the Tight‐Binding Model by Discrete Fractional Fourier Transform 用离散分式傅里叶变换扩展紧密结合模型
physica status solidi (b) Pub Date : 2024-07-14 DOI: 10.1002/pssb.202400176
T. Miyadera, Yuji Yoshida, M. Chikamatsu
{"title":"Extending the Tight‐Binding Model by Discrete Fractional Fourier Transform","authors":"T. Miyadera, Yuji Yoshida, M. Chikamatsu","doi":"10.1002/pssb.202400176","DOIUrl":"https://doi.org/10.1002/pssb.202400176","url":null,"abstract":"An extension of the tight‐binding approximation model using the discrete fractional Fourier transform is proposed. The quantum state between localized and delocalized states is formulated, where the intermediate state is continuously parameterized. The mixed features of the localized molecular‐like state and delocalized wave‐like state are confirmed when the wavefunction and band diagram of the intermediate state are represented. The proposed model is expected to be used to represent the quantum state with localized/delocalized features in, for example, organic semiconductors.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141650537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incorporation and Interaction of Co‐Doped Be and Mg in GaN Grown by Metal‐Organic Chemic Vapor Deposition 金属有机化学气相沉积法生长的氮化镓中共掺杂铍和镁的掺入与相互作用
physica status solidi (b) Pub Date : 2024-07-14 DOI: 10.1002/pssb.202400211
B. McEwen, E. Rocco, Vincent Meyers, Alireza Lanjani, Shadi Omranpour, O. Andrieiev, M. Vorobiov, D. Demchenko, M. Reshchikov, F. Shahedipour-Sandvik
{"title":"Incorporation and Interaction of Co‐Doped Be and Mg in GaN Grown by Metal‐Organic Chemic Vapor Deposition","authors":"B. McEwen, E. Rocco, Vincent Meyers, Alireza Lanjani, Shadi Omranpour, O. Andrieiev, M. Vorobiov, D. Demchenko, M. Reshchikov, F. Shahedipour-Sandvik","doi":"10.1002/pssb.202400211","DOIUrl":"https://doi.org/10.1002/pssb.202400211","url":null,"abstract":"Despite recent advances in growth and characterization of GaN:Be, reliable conductive p‐type GaN:Be remains elusive. In this work, GaN is co‐doped with Be and Mg to improve the incorporation and ionization efficiency of both Be and Mg. Be and Mg are found to interact in complex ways rendering GaN:Be,Mg semi‐insulating. Rather than improving Be and Mg incorporation efficiency, there is an apparent mutual inhibition of incorporation when Be and Mg are co‐dopants. Furthermore, photoluminescence measurements indicate that the BeGa acceptor is reduced in particular, relative to the total [Be]. The same effect is not observed for Mg. From this, it is concluded that Mg preferentially incorporates into Ga lattice sites over Be, and excess Be that cannot incorporate into substitutional sites instead occupies interstitial sites. The interstitial Be acts as donor defect, which compensate Mg acceptors. This provides an explanation for the observed reduction in BeGa‐related luminescence intensity (without an associated decrease in [Be]) in GaN:Be with significant [Mg] content.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141649719","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Theoretical Study of Magnetization and Electrical Conductivity of Ion‐Doped KBiFe2O5 Nanoparticles 离子掺杂 KBiFe2O5 纳米粒子的磁化和导电性理论研究
physica status solidi (b) Pub Date : 2024-06-11 DOI: 10.1002/pssb.202400252
A. Apostolov, I. Apostolova, J. Wesselinowa
{"title":"Theoretical Study of Magnetization and Electrical Conductivity of Ion‐Doped KBiFe2O5 Nanoparticles","authors":"A. Apostolov, I. Apostolova, J. Wesselinowa","doi":"10.1002/pssb.202400252","DOIUrl":"https://doi.org/10.1002/pssb.202400252","url":null,"abstract":"The electrical conductivity σ and magnetization M of (KBFO) nanoparticles (NPs) are systematically examined using a microscopic model and Green's function theory. KBFO is characterized by a narrow bandgap and relatively weak electrical conductivity σ, which presents a problem in carrier transportation and collection. Therefore, ways to enhance σ are found. The first is reducing the NP size. The second one is doping at the Fe and Bi sites with different ions which cause a compressive strain, that is, their ionic radius is smaller than that of the host ion. It is shown that doping with Al at the Fe site as well as with Ru or La ions at the Bi site leads to enhancing the electrical conductivity σ. The magnetization M increases with increasing concentration of all dopants.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141360109","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Role of Substrate on the Fractal Characteristics of Nanostructure Surfaces of Electrodeposited Nickel Thin Films 基底对电沉积镍薄膜纳米结构表面分形特征的影响
physica status solidi (b) Pub Date : 2024-06-11 DOI: 10.1002/pssb.202400109
Maryam Nasehnejad, G. Nabiyouni
{"title":"Role of Substrate on the Fractal Characteristics of Nanostructure Surfaces of Electrodeposited Nickel Thin Films","authors":"Maryam Nasehnejad, G. Nabiyouni","doi":"10.1002/pssb.202400109","DOIUrl":"https://doi.org/10.1002/pssb.202400109","url":null,"abstract":"This study investigates the structure, morphological, and roughness properties of electrodeposited nickel thin films grown on different substrates, that is, silicon, copper, and gold. X‐ray diffraction analysis reveals that the Ni coatings exhibit a face‐centered‐cubic phase, regardless of the substrate used, although the texture is mainly influenced by the substrate. Atomic force microscopy images show that larger grains are obtained with gold substrates, while smaller ones are observed with copper and silicon substrates, in agreement with scanning electron microscopy. The results demonstrate that both topological and fractal characteristics of the Ni thin films are significantly influenced by the type of substrate. Statistical parameters are quantified to compare the surface morphology of the different samples. Fractal analysis reveals that the fractal dimensions of all surfaces range between 2 and 3, indicating self‐affinity. Fractal succolarity and lacunarity are measured to assess the penetration of a liquid into the surface and the distribution of gaps in the Ni film surfaces, respectively. Minkowski functionals are utilized for topological analysis to characterize the internal structure of the Ni thin films. The observed differences in roughness characteristics provide evidence that the type of substrate affects the nucleation and growth of surface features during electrodeposition.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141360223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probing the Interplay between Ferroelectricity and Metallicity in KNbO3/BaTiO3 Superlattices through Strain Engineering 通过应变工程探究 KNbO3/BaTiO3 超晶格中铁电性与金属性之间的相互作用
physica status solidi (b) Pub Date : 2024-06-09 DOI: 10.1002/pssb.202400066
Gang Li, Ningjie Ma, Minghua Tang, Z. Long
{"title":"Probing the Interplay between Ferroelectricity and Metallicity in KNbO3/BaTiO3 Superlattices through Strain Engineering","authors":"Gang Li, Ningjie Ma, Minghua Tang, Z. Long","doi":"10.1002/pssb.202400066","DOIUrl":"https://doi.org/10.1002/pssb.202400066","url":null,"abstract":"The discovery of polar metals challenges long‐standing assumptions about the incompatibility between polar order and metallicity. However, despite recent progress, the mechanism allowing the coexistence of these supposedly forbidden properties remains unclear. Herein, carriers are introduced by constructing a symmetric polar/nonpolar interface in the KNbO3/BaTiO3 (KNO/BTO) superlattice (SL), enabling the coexistence of ferroelectric and metallic properties. A first‐principles analysis of the evolution of polar distortion and metallicity in the KNO/BTO SL under biaxial strain in the face to explore the dependence of the two at the microscopic level is performed. It is found that compressive strain enhances polarization distortion while reducing conductivity from three dimensions to two dimensions, indicating a weak coupling mechanism between carriers and polarization. Furthermore, it is shown that the presence of holes strengthens the TiO (NbO) covalent bonds, resulting in an unexpected enhancement of the polarization properties of the KNO/BTO SL. Therefore, it is proposed using the carrier screening effect and covalent bonding synergies as a framework for understanding the interaction between ferroelectricity and free carriers, rather than just a single factor therein. These results provide new theoretical insights for designing robust polar metals in perovskite ferroelectrics.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141367321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
First‐Principles Calculation of Basic Properties of Rhombohedral Hafnium Oxide with Space Group R3 空间群为 R3 的斜方氧化铪基本特性的第一原理计算
physica status solidi (b) Pub Date : 2024-06-08 DOI: 10.1002/pssb.202400105
Alexander Reznik, Vyacheslav Konstantinov, E. Ganykina, Askar Rezvanov
{"title":"First‐Principles Calculation of Basic Properties of Rhombohedral Hafnium Oxide with Space Group R3","authors":"Alexander Reznik, Vyacheslav Konstantinov, E. Ganykina, Askar Rezvanov","doi":"10.1002/pssb.202400105","DOIUrl":"https://doi.org/10.1002/pssb.202400105","url":null,"abstract":"Structural, mechanical, and electrophysical properties of rhombohedral hafnium oxide (r‐HfO2) with space group R3, as well as properties of HfO2, ZrO2, and Hf0.5Zr0.5O2 with space group Pca21 are studied using quantum chemical calculations. The characteristic diffraction peak of 2θ r‐HfO2 is close to the characteristic diffraction peaks of tetragonal (t‐HfO2) and orthorhombic (f‐HfO2) hafnium oxide. The value of bulk modulus is 231 GPa, which is larger than one of the orthorhombic structures. The values of high intensity peaks of Raman spectrum are 670 and 540 cm−1. The bandgap width is 5.8 eV and the average value of dielectric constant is 35.34, which is higher than one of orthorhombic hafnium oxide.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141370393","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geometrical, Electronic, and Optical Properties of Rhombohedral B6O from First‐Principles Calculation 从第一原理计算得出的斜方体 B6O 的几何、电子和光学特性
physica status solidi (b) Pub Date : 2024-06-04 DOI: 10.1002/pssb.202400152
Gui‐Zhu Ran, Qi-Jun Liu, Zheng‐Tang Liu, Ya‐Le Tao
{"title":"Geometrical, Electronic, and Optical Properties of Rhombohedral B6O from First‐Principles Calculation","authors":"Gui‐Zhu Ran, Qi-Jun Liu, Zheng‐Tang Liu, Ya‐Le Tao","doi":"10.1002/pssb.202400152","DOIUrl":"https://doi.org/10.1002/pssb.202400152","url":null,"abstract":"The first‐principles computational methods based on density functional theory are used to study B6O, including its structural, elastic, electronic, and optical properties. The results show that the obtained structural and mechanical parameters are in good agreement with the experimental values. The elastic constants, bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and mechanical stability of rhombohedral B6O are studied. The results show that B6O has mechanical stability, anisotropy, and brittleness. The electronic structure of B6O is analyzed by band structure and density of states. Besides, the chemical bond is systematically explained in terms of Mulliken population and charge density. Finally, the optical characteristics of B6O are examined, encompassing aspects such as the complex dielectric function, conductivity, reflectivity, refractive index, absorption spectrum, and loss function.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141266469","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical Properties and Hydrogen Embrittlement Resistance of the High‐Entropy Alloy CrFeMnNiCo and Its Subsystems 高熵合金 CrFeMnNiCo 及其子系统的机械性能和抗氢脆性
physica status solidi (b) Pub Date : 2024-06-04 DOI: 10.1002/pssb.202400162
Qiu Xu, H. Guan, Shaosong Huang, Zhihong Zhong, Atsushi Yabuuchi, Koichi Sato
{"title":"Mechanical Properties and Hydrogen Embrittlement Resistance of the High‐Entropy Alloy CrFeMnNiCo and Its Subsystems","authors":"Qiu Xu, H. Guan, Shaosong Huang, Zhihong Zhong, Atsushi Yabuuchi, Koichi Sato","doi":"10.1002/pssb.202400162","DOIUrl":"https://doi.org/10.1002/pssb.202400162","url":null,"abstract":"The effects of hydrogen on the mechanical properties of CrNiCo and CrFeNiCo medium‐entropy alloys (MEAs) and CrFeMnNiCo high‐entropy alloys (HEAs) are investigated. Although their total elongation is less than that of the commonly used stainless steel (SS) 316L (SS316L), the tensile strengths of HEAs and MEAs are 150–350 MPa higher than that of SS316L. Hydrogen charging up to 1400 appm (nominal concentration) does not affect the tensile strength of SS316L; however, it decreases the elongation by less than 20%. In contrast, hydrogen increases the tensile strength of MEAs and HEA, but has little effect on elongation. Among the MEAs and HEAs, CrNiCo exhibits the highest tensile strength and total elongation. No brittle fracture due to hydrogen is observed on the fracture surfaces of the H‐charged samples. However, nanotwin structures are more common in H‐charged MEAs and HEAs than in H‐uncharged MEAs and HEA. Additionally, the calculation results based on the first‐principles reveal for the first time that single vacancies or tiny vacancy clusters do not trap H in MEAs compared to HEAs, such that cracks due to H are unlikely to occur. Thus, the hydrogen embrittlement resistance of MEAs may be improved.","PeriodicalId":20107,"journal":{"name":"physica status solidi (b)","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-06-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141268156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信