Physical Review BPub Date : 2025-01-29DOI: 10.1103/physrevb.111.024209
Céline Crépisson, Alexis Amouretti, Marion Harmand, Chrystèle Sanloup, Patrick Heighway, Sam Azadi, David McGonegle, Thomas Campbell, Juan Pintor, David Alexander Chin, Ethan Smith, Linda Hansen, Alessandro Forte, Thomas Gawne, Hae Ja Lee, Bob Nagler, YuanFeng Shi, Guillaume Fiquet, François Guyot, Mikako Makita, Alessandra Benuzzi-Mounaix, Tommaso Vinci, Kohei Miyanishi, Norimasa Ozaki, Tatiana Pikuz, Hirotaka Nakamura, Keiichi Sueda, Toshinori Yabuuchi, Makina Yabashi, Justin S. Wark, Danae N. Polsin, Sam M. Vinko
{"title":"Shock-driven amorphization and melting in Fe2O3","authors":"Céline Crépisson, Alexis Amouretti, Marion Harmand, Chrystèle Sanloup, Patrick Heighway, Sam Azadi, David McGonegle, Thomas Campbell, Juan Pintor, David Alexander Chin, Ethan Smith, Linda Hansen, Alessandro Forte, Thomas Gawne, Hae Ja Lee, Bob Nagler, YuanFeng Shi, Guillaume Fiquet, François Guyot, Mikako Makita, Alessandra Benuzzi-Mounaix, Tommaso Vinci, Kohei Miyanishi, Norimasa Ozaki, Tatiana Pikuz, Hirotaka Nakamura, Keiichi Sueda, Toshinori Yabuuchi, Makina Yabashi, Justin S. Wark, Danae N. Polsin, Sam M. Vinko","doi":"10.1103/physrevb.111.024209","DOIUrl":"https://doi.org/10.1103/physrevb.111.024209","url":null,"abstract":"We present measurements on Fe</a:mi>2</a:mn></a:msub>O</a:mi>3</a:mn></a:msub></a:mrow></a:math> amorphization and melt under laser-driven shock compression up to 209(10) GPa via time-resolved x-ray diffraction. At 122(3) GPa, a diffuse signal is observed indicating the presence of a noncrystalline phase. Structure factors have been extracted up to 182(6) GPa showing the presence of two well-defined peaks. A rapid change in the intensity ratio of the two peaks is identified between 145(12) and 151(12) GPa, indicative of a phase change. The noncrystalline diffuse scattering is consistent with shock amorphization of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:msub><c:mi>Fe</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi mathvariant=\"normal\">O</c:mi><c:mn>3</c:mn></c:msub></c:mrow></c:math> between 122(3) and 145(12) GPa, followed by an amorphous-to-liquid transition above 151(12) GPa. Upon release, a noncrystalline phase is observed alongside crystalline <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:mi>α</e:mi><e:mtext>−</e:mtext><e:msub><e:mi>Fe</e:mi><e:mn>2</e:mn></e:msub><e:msub><e:mi mathvariant=\"normal\">O</e:mi><e:mn>3</e:mn></e:msub></e:mrow></e:math>. The extracted structure factor and pair distribution function of this release phase resemble those reported for <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:msub><g:mi>Fe</g:mi><g:mn>2</g:mn></g:msub><g:msub><g:mi mathvariant=\"normal\">O</g:mi><g:mn>3</g:mn></g:msub></g:mrow></g:math> melt at ambient pressure. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"27 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056987","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review BPub Date : 2025-01-29DOI: 10.1103/physrevb.111.045162
P. Khanenko, D. Hafner, K. Semeniuk, J. Banda, T. Lühmann, F. Bärtl, T. Kotte, J. Wosnitza, G. Zwicknagl, C. Geibel, J. F. Landaeta, S. Khim, E. Hassinger, M. Brando
{"title":"Origin of the non-Fermi-liquid behavior in CeRh2As2","authors":"P. Khanenko, D. Hafner, K. Semeniuk, J. Banda, T. Lühmann, F. Bärtl, T. Kotte, J. Wosnitza, G. Zwicknagl, C. Geibel, J. F. Landaeta, S. Khim, E. Hassinger, M. Brando","doi":"10.1103/physrevb.111.045162","DOIUrl":"https://doi.org/10.1103/physrevb.111.045162","url":null,"abstract":"Unconventional superconductivity in heavy-fermion systems appears often near magnetic quantum critical points (QCPs). This seems to be the case also for CeRh</a:mi>2</a:mn></a:msub>As</a:mi>2</a:mn></a:msub></a:mrow></a:math> (<b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msub><b:mi>T</b:mi><b:mtext>c</b:mtext></b:msub><b:mo> </b:mo><b:mo>≈</b:mo><b:mn>0.31</b:mn></b:math> K). <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:msub><c:mi>CeRh</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mi>As</c:mi><c:mn>2</c:mn></c:msub></c:mrow></c:math> shows two superconducting (SC) phases, SC1 and SC2, for a magnetic field along the <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mi>c</d:mi></d:math> axis of the tetragonal unit cell, but only the SC1 phase is observed for a field along the basal plane. Furthermore, another ordered state (phase I) is observed below <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:msub><e:mi>T</e:mi><e:mn>0</e:mn></e:msub><e:mo>≈</e:mo><e:mn>0.48</e:mn><e:mspace width=\"0.16em\"/><e:mi mathvariant=\"normal\">K</e:mi></e:mrow></e:math> whose nature is still unclear: Thermodynamic and magnetic measurements pointed to a nonmagnetic multipolar state, but recent <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:mi>µ</h:mi><h:mi>SR</h:mi></h:mrow></h:math> and nuclear quadrupole resonance/nuclear magnetic resonance (NMR) experiments have clearly detected antiferromagnetic (AFM) order below <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\"><i:msub><i:mi>T</i:mi><i:mtext>0</i:mtext></i:msub></i:math>. Also, quasi-two-dimensional AFM fluctuations were observed in NMR and neutron-scattering experiments above <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:msub><j:mi>T</j:mi><j:mtext>0</j:mtext></j:msub></j:math>. The proximity of a QCP is indicated by non-Fermi-liquid (NFL) behavior observed above the ordered states in both specific heat <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\"><k:mrow><k:mi>C</k:mi><k:mrow><k:mo>(</k:mo><k:mi>T</k:mi><k:mo>)</k:mo></k:mrow><k:mo>/</k:mo><k:mi>T</k:mi><k:mo>∝</k:mo><k:msup><k:mi>T</k:mi><k:mrow><k:mo>−</k:mo><k:mn>0.6</k:mn></k:mrow></k:msup></k:mrow></k:math> and resistivity <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:mrow><l:mi>ρ</l:mi><l:mrow><l:mo>(</l:mo><l:mi>T</l:mi><l:mo>)</l:mo></l:mrow><l:mo>∝</l:mo><l:msqrt><l:mi>T</l:mi></l:msqrt></l:mrow></l:math>. These <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mi>T</m:mi></m:math> dependencies are not compatible with any generic AFM QCP. Because of the strong magnetic-field anisotropy of both the SC phase and phase I, it is possible to study a field-induced SC QCP as well as a phase-I QCP by varying the angle <n:math xmlns:n=\"http://www.w3.org/1998/Math/MathML\"><n:mi>α</n:mi></n:math> between the field and the <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\"><o:mi>c</o:mi></o:math> axis. Thus, by examining the behavior of the electronic specific-heat co","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"74 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review BPub Date : 2025-01-28DOI: 10.1103/physrevb.111.l041115
Maxim Wenzel, Ece Uykur, Sahana Rößler, Marcus Schmidt, Oleg Janson, Achyut Tiwari, Martin Dressel, Alexander A. Tsirlin
{"title":"Fermi-liquid behavior of nonaltermagnetic RuO2","authors":"Maxim Wenzel, Ece Uykur, Sahana Rößler, Marcus Schmidt, Oleg Janson, Achyut Tiwari, Martin Dressel, Alexander A. Tsirlin","doi":"10.1103/physrevb.111.l041115","DOIUrl":"https://doi.org/10.1103/physrevb.111.l041115","url":null,"abstract":"The presence of magnetism in potentially altermagnetic RuO</a:mi>2</a:mn></a:msub></a:math> has been a subject of intense debate. Using broadband infrared spectroscopy combined with density-functional band-structure calculations, we show that the optical conductivity of <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msub><b:mi>RuO</b:mi><b:mn>2</b:mn></b:msub></b:math>, the bulk probe of its electronic structure, is best described by a nonmagnetic model. The sharp Pauli edge demonstrates the presence of a Dirac nodal line lying 45 meV below the Fermi level. An excellent match between the experimental and plasma frequencies underpins the weakness of electronic correlations. The intraband part of the optical conductivity indicates Fermi-liquid behavior with two distinct scattering rates below 150 K. Fermi-liquid theory also accounts for the temperature-dependent magnetic susceptibility of <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:msub><c:mi>RuO</c:mi><c:mn>2</c:mn></c:msub></c:math> and allows a consistent description of this material as a paramagnetic metal. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"52 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review BPub Date : 2025-01-28DOI: 10.1103/physrevb.111.035307
A. Łopion, A. Bogucki, M. Raczyński, Z. Śnioch, K. E. Połczyńska, W. Pacuski, T. Kazimierczuk, A. Golnik, P. Kossacki
{"title":"Impact of the hole gas on optically detected magnetic resonance in (Cd,Mn)Te -based quantum wells","authors":"A. Łopion, A. Bogucki, M. Raczyński, Z. Śnioch, K. E. Połczyńska, W. Pacuski, T. Kazimierczuk, A. Golnik, P. Kossacki","doi":"10.1103/physrevb.111.035307","DOIUrl":"https://doi.org/10.1103/physrevb.111.035307","url":null,"abstract":"Optically detected magnetic resonance (ODMR) is a useful technique for studying interactions between local spins (magnetic ions) and the carrier gas. We present an ODMR study of a single (</a:mo>Cd</a:mtext>,</a:mtext>Mn</a:mtext>)</a:mo>Te</a:mtext>/</a:mo>(</a:mo>Cd</a:mtext>,</a:mtext>Mg</a:mtext>)</a:mo>Te</a:mtext></a:math> quantum wells (QWs) with the hole gas. We observe different characteristics of the ODMR signals obtained simultaneously using the optical signals of the neutral and positively charged exciton. From this, we infer the existence of local fluctuations of carrier gas density resulting in separate populations of <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:msup><b:mrow><b:mi>Mn</b:mi></b:mrow><b:mrow><b:mn>2</b:mn><b:mo>+</b:mo></b:mrow></b:msup></b:math> ions. At the same time, the shape of the ODMR signal contains information about the temperature of the magnetic ions involved in the absorption of the microwaves. Studying it in detail provides even more information about the interactions with charge carriers. In the QW, two separate ensembles of ions are thermalized differently in the presence of carriers. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"39 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143055330","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review BPub Date : 2025-01-27DOI: 10.1103/physrevb.111.045157
Bin He, Tianye Yu, Yu Pan, Congcong Le, Dong Chen, Yan Sun, Claudia Felser
{"title":"Evolution of nodal line induced out-of-plane anomalous Hall effect in Co3Sn2S2","authors":"Bin He, Tianye Yu, Yu Pan, Congcong Le, Dong Chen, Yan Sun, Claudia Felser","doi":"10.1103/physrevb.111.045157","DOIUrl":"https://doi.org/10.1103/physrevb.111.045157","url":null,"abstract":"Weyl semimetals have attracted considerable research interest over the past decade, with a number of intriguing transport phenomena reported. Magnetic Weyl semimetals, which break time reversal symmetry, have been predicted and recently discovered. Co</a:mi>3</a:mn></a:msub>Sn</a:mi>2</a:mn></a:msub>S</a:mi>2</a:mn></a:msub></a:mrow></a:math> is a magnetic Weyl semimetal that exhibit a giant anomalous Hall effect (AHE) when the magnetic moments are aligned along the <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mi>c</e:mi></e:math> axis. In this paper, we report the evolution of the AHE with an external magnetic field applied in the <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:mrow><f:mi>a</f:mi><f:mi>b</f:mi></f:mrow></f:math> plane and current along the <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mi>c</g:mi></g:math> axis, namely, the out-of-plane AHE of <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mrow><h:msub><h:mi mathvariant=\"normal\">Co</h:mi><h:mn>3</h:mn></h:msub><h:msub><h:mi mathvariant=\"normal\">Sn</h:mi><h:mn>2</h:mn></h:msub><h:msub><h:mi mathvariant=\"normal\">S</h:mi><h:mn>2</h:mn></h:msub></h:mrow></h:math>. Density functional theory calculations predict a finite out-of-plane AHE when the spins are fully aligned in the <l:math xmlns:l=\"http://www.w3.org/1998/Math/MathML\"><l:mrow><l:mi>a</l:mi><l:mi>b</l:mi></l:mrow></l:math> plane. The evolution of the magnetic structure modifies the nodal line distribution and the Berry curvature, resulting in a weaker AHE with an amplitude of <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"><m:mrow><m:mn>200</m:mn><m:mspace width=\"0.16em\"/><m:mi mathvariant=\"normal\">S</m:mi><m:mspace width=\"0.28em\"/><m:mi mathvariant=\"normal\">c</m:mi><m:msup><m:mrow><m:mi mathvariant=\"normal\">m</m:mi></m:mrow><m:mrow><m:mo>−</m:mo><m:mn>1</m:mn></m:mrow></m:msup></m:mrow></m:math> at the saturation field. To ensure the alignment of the magnetic field in the <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\"><s:mrow><s:mi>a</s:mi><s:mi>b</s:mi></s:mrow></s:math> plane, a two-round scanning process was performed experimentally. After this, the out-of-plane AHE was measured at multiple temperatures. The observed AHE signals with applied fields of 1 and 2 T were in good agreement with theoretical predictions. These results suggest that engineering the anomalous Hall effect may be possible by designing the symmetry relation of the local Berry curvature. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"59 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review BPub Date : 2025-01-27DOI: 10.1103/physrevb.111.024314
Gesa Dünnweber, Simon M. Linsel, Annabelle Bohrdt, Fabian Grusdt
{"title":"Percolation renormalization group analysis of confinement in Z2 lattice gauge theories","authors":"Gesa Dünnweber, Simon M. Linsel, Annabelle Bohrdt, Fabian Grusdt","doi":"10.1103/physrevb.111.024314","DOIUrl":"https://doi.org/10.1103/physrevb.111.024314","url":null,"abstract":"The analytical study of confinement in lattice gauge theories (LGTs) remains a difficult task to this day. Taking a geometric perspective on confinement, we develop a real-space renormalization group (RG) formalism for Z</a:mi>2</a:mn></a:msub></a:math> LGTs using percolation probability as a confinement order parameter. The RG flow we analyze is constituted by both the percolation probability and the coupling parameters. We consider a classical <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:msub><c:mi mathvariant=\"double-struck\">Z</c:mi><c:mn>2</c:mn></c:msub></c:math> LGT in two dimensions, with matter and thermal fluctuations, and analytically derive the confinement phase diagram. We find good agreement with numerical and exact benchmark results and confirm that a finite matter density enforces confinement at <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\"><e:mrow><e:mi>T</e:mi><e:mo><</e:mo><e:mi>∞</e:mi></e:mrow></e:math> in the model we consider. Our RG scheme enables future analytical studies of <f:math xmlns:f=\"http://www.w3.org/1998/Math/MathML\"><f:msub><f:mi mathvariant=\"double-struck\">Z</f:mi><f:mn>2</f:mn></f:msub></f:math> LGTs with matter and quantum fluctuations and beyond. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"20 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review BPub Date : 2025-01-27DOI: 10.1103/physrevb.111.024424
Reinhard K. Kremer, Sebastian Bette, Jürgen Nuss, Pascal Puphal
{"title":"Chemical and structural disorder in the kagome spin S=12 systems ZnCu3(OH)6Cl2 and YCu3(OH)6Br2[Brx(OH)1−x]","authors":"Reinhard K. Kremer, Sebastian Bette, Jürgen Nuss, Pascal Puphal","doi":"10.1103/physrevb.111.024424","DOIUrl":"https://doi.org/10.1103/physrevb.111.024424","url":null,"abstract":"By single crystal diffraction we characterize the chemostructural disorder introduced by Zn-Cu site mixing in the kagome spin S</a:mi>=</a:mo>1</a:mn>2</a:mn></a:mfrac></a:mrow></a:math> systems herbertsmithite <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:msub><b:mi>ZnCu</b:mi><b:mn>3</b:mn></b:msub><b:msub><b:mrow><b:mo>(</b:mo><b:mi>OH</b:mi><b:mo>)</b:mo></b:mrow><b:mn>6</b:mn></b:msub><b:msub><b:mi>Cl</b:mi><b:mn>2</b:mn></b:msub></b:mrow></b:math> and <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:msub><c:mi>YCu</c:mi><c:mn>3</c:mn></c:msub><c:msub><c:mrow><c:mo>(</c:mo><c:mi>OH</c:mi><c:mo>)</c:mo></c:mrow><c:mn>6</c:mn></c:msub><c:msub><c:mi>Br</c:mi><c:mn>2</c:mn></c:msub><c:msub><c:mrow><c:mo>[</c:mo><c:mi>Br</c:mi></c:mrow><c:mi>x</c:mi></c:msub><c:msub><c:mrow><c:mo>(</c:mo><c:mi>OH</c:mi><c:mo>)</c:mo></c:mrow><c:mrow><c:mn>1</c:mn><c:mo>−</c:mo><c:mi>x</c:mi></c:mrow></c:msub></c:mrow><c:mo>]</c:mo></c:math>. For an untwinned single crystal of herbertsmithite of composition <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mrow><d:msub><d:mi>Zn</d:mi><d:mrow><d:mn>0.95</d:mn><d:mo>(</d:mo><d:mn>1</d:mn><d:mo>)</d:mo></d:mrow></d:msub><d:msub><d:mi>Cu</d:mi><d:mrow><d:mn>2.99</d:mn><d:mo>(</d:mo><d:mn>3</d:mn><d:mo>)</d:mo></d:mrow></d:msub><d:msub><d:mi mathvariant=\"normal\">O</d:mi><d:mrow><d:mn>5.9</d:mn><d:mo>(</d:mo><d:mn>1</d:mn><d:mo>)</d:mo></d:mrow></d:msub><d:msub><d:mi mathvariant=\"normal\">H</d:mi><d:mrow><d:mn>5.8</d:mn><d:mo>(</d:mo><d:mn>1</d:mn><d:mo>)</d:mo></d:mrow></d:msub><d:msub><d:mi>Cl</d:mi><d:mn>2</d:mn></d:msub></d:mrow></d:math> we find substitution by Cu of the Zn atoms in the layers separating the kagome layers as well as substantial Zn substitution for Cu in the kagome layers. In <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\"><g:mrow><g:msub><g:mi>YCu</g:mi><g:mn>3</g:mn></g:msub><g:msub><g:mrow><g:mo>(</g:mo><g:mi>OH</g:mi><g:mo>)</g:mo></g:mrow><g:mn>6</g:mn></g:msub><g:msub><g:mi>Br</g:mi><g:mn>2</g:mn></g:msub><g:msub><g:mrow><g:mo>[</g:mo><g:mi>Br</g:mi></g:mrow><g:mi>x</g:mi></g:msub><g:msub><g:mrow><g:mo>(</g:mo><g:mi>OH</g:mi><g:mo>)</g:mo></g:mrow><g:mrow><g:mn>1</g:mn><g:mo>−</g:mo><g:mi>x</g:mi></g:mrow></g:msub></g:mrow><g:mo>]</g:mo></g:math> site mixing disorder is present for intermediate <h:math xmlns:h=\"http://www.w3.org/1998/Math/MathML\"><h:mi>x</h:mi></h:math>. Analogous to the Cl homologous system in crystals with <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\"><i:mrow><i:mi>x</i:mi><i:mo>=</i:mo><i:mn>1</i:mn><i:mo>/</i:mo><i:mn>3</i:mn></i:mrow></i:math> disorder is absent and a low-temperature structural transition emerges driven by strong magnetophonon coupling as a release of frustration. Apart from this structural anomaly we find the physical properties of these crystals unchanged compared to intermediate <j:math xmlns:j=\"http://www.w3.org/1998/Math/MathML\"><j:mi>x</j:mi></j:math> and closely resembling the Cl homologue where lon","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143049869","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review BPub Date : 2025-01-24DOI: 10.1103/physrevb.111.045154
Roman Rausch, Christoph Karrasch
{"title":"Noncollinear phase of the antiferromagnetic sawtooth chain","authors":"Roman Rausch, Christoph Karrasch","doi":"10.1103/physrevb.111.045154","DOIUrl":"https://doi.org/10.1103/physrevb.111.045154","url":null,"abstract":"The antiferromagnetic sawtooth chain is a prototypical example of a frustrated spin system with vertex-sharing triangles, giving rise to complex quantum states. Depending on the interaction parameters, this system has three phases, of which the gapless noncollinear phase (for strongly coupled basal spins and loosely attached apical spins) has received little theoretical attention so far. In this work, we comprehensively investigate the properties of the noncollinear phase using large-scale tensor network computations which exploit the full SU(2) symmetry of the underlying Heisenberg model. We study the ground state both for finite systems using the density-matrix renormalization group (DMRG) as well as for infinite chains via the variational uniform matrix-product state (VUMPS) formalism. Finite temperatures and correlation functions are tackled via imaginary or real time evolutions, which we implement using the time-dependent variational principle (TDVP). We find that the noncollinear phase is characterized by a low-momentum peak and a diffuse tail for the apex-apex correlations. Deep into the phase, the pattern sharpens into a peak indicating a 90</a:mn>∘</a:mo></a:msup></a:math> spiral. The apical spins are soft and highly susceptible to external perturbations; they give rise to a large number of gapless magnetic states that are polarized by weak fields and cause a long low-temperature tail in the specific heat. The dynamic spin-structure factor exhibits additive contributions from a two-spinon continuum (excitations of the basal chain) and a gapless peak at <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:mi>k</b:mi><b:mo>=</b:mo><b:mi>π</b:mi><b:mo>/</b:mo><b:mn>2</b:mn></b:mrow></b:math> (excitations of the apical spins). Small temperatures excite the gapless states and smear the spectral weight of the <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:mi>k</c:mi><c:mo>=</c:mo><c:mi>π</c:mi><c:mo>/</c:mo><c:mn>2</c:mn></c:mrow></c:math> peak out into a homogeneous flat-band structure. Our results are relevant, e.g., for the material atacamite <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mrow><d:msub><d:mi>Cu</d:mi><d:mn>2</d:mn></d:msub><d:mi>Cl</d:mi><d:msub><d:mrow><d:mo>(</d:mo><d:mi>OH</d:mi><d:mo>)</d:mo></d:mrow><d:mn>3</d:mn></d:msub></d:mrow></d:math> in high magnetic fields. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"22 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review BPub Date : 2025-01-24DOI: 10.1103/physrevb.111.035146
Adipta Pal, Ashley M. Cook
{"title":"Finite-size topological phases from semimetals","authors":"Adipta Pal, Ashley M. Cook","doi":"10.1103/physrevb.111.035146","DOIUrl":"https://doi.org/10.1103/physrevb.111.035146","url":null,"abstract":"Topological semimetals are some of the topological phases of matter most intensely studied experimentally. The Weyl semimetal phase, in particular, has garnered tremendous, sustained interest given fascinating signatures such as the Fermi arc surface states and the chiral anomaly, as well as the minimal requirements to protect this three-dimensional (3D) topological phase. Here, we show that thin films of Weyl semimetals [which we call quasi-(3</a:mn>−</a:mo>1</a:mn></a:mrow></a:math>)-dimensional, or q(<b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:mn>3</b:mn><b:mo>−</b:mo><b:mn>1</b:mn></b:mrow></b:math>)D] generically realize finite-size topological phases distinct from 3D and 2D topological phases of established classification schemes: response signatures of the 3D bulk topology coexist with topologically protected, quasi-(<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:mn>3</c:mn><c:mo>−</c:mo><c:mn>2</c:mn></c:mrow></c:math>)D Fermi arc states or chiral boundary modes due to a second, previously unidentified bulk-boundary correspondence. We show these finite-size topological semimetal phases are realized by Hamiltonians capturing the Fermiology of few-layer van der Waals material <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:msub><d:mi>MoTe</d:mi><d:mn>2</d:mn></d:msub></d:math> in experiment. Given the broad experimental interest in few-layer van der Waals materials and topological semimetals, our work paves the way for extensive future theoretical and experimental characterization of finite-size topological phases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"6 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143030928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Physical Review BPub Date : 2025-01-23DOI: 10.1103/physrevb.111.l041114
Tobias Dornheim, Zhandos A. Moldabekov, Sebastian Schwalbe, Jan Vorberger
{"title":"Direct free energy calculation from ab initio path integral Monte Carlo simulations of warm dense matter","authors":"Tobias Dornheim, Zhandos A. Moldabekov, Sebastian Schwalbe, Jan Vorberger","doi":"10.1103/physrevb.111.l041114","DOIUrl":"https://doi.org/10.1103/physrevb.111.l041114","url":null,"abstract":"We carry out highly accurate path integral Monte Carlo simulations to directly estimate the free energy of various warm dense matter systems including the uniform electron gas and hydrogen without any nodal restrictions or other approximations. Since our approach is based on an effective ensemble in a bosonic configuration space, it does not increase the computational complexity beyond the usual fermion sign problem. Its application to inhomogeneous cases such as an electronic system in a fixed external ion potential is straightforward and opens up the enticing possibility to benchmark density functional theory and other existing methods. Finally, it is not limited to warm dense matter and can be applied to a gamut of other systems such as ultracold atoms and electrons in quantum dots. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"21 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2025-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026406","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}