Finite-size topological phases from semimetals

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Adipta Pal, Ashley M. Cook
{"title":"Finite-size topological phases from semimetals","authors":"Adipta Pal, Ashley M. Cook","doi":"10.1103/physrevb.111.035146","DOIUrl":null,"url":null,"abstract":"Topological semimetals are some of the topological phases of matter most intensely studied experimentally. The Weyl semimetal phase, in particular, has garnered tremendous, sustained interest given fascinating signatures such as the Fermi arc surface states and the chiral anomaly, as well as the minimal requirements to protect this three-dimensional (3D) topological phase. Here, we show that thin films of Weyl semimetals [which we call quasi-(3</a:mn>−</a:mo>1</a:mn></a:mrow></a:math>)-dimensional, or q(<b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:mn>3</b:mn><b:mo>−</b:mo><b:mn>1</b:mn></b:mrow></b:math>)D] generically realize finite-size topological phases distinct from 3D and 2D topological phases of established classification schemes: response signatures of the 3D bulk topology coexist with topologically protected, quasi-(<c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:mn>3</c:mn><c:mo>−</c:mo><c:mn>2</c:mn></c:mrow></c:math>)D Fermi arc states or chiral boundary modes due to a second, previously unidentified bulk-boundary correspondence. We show these finite-size topological semimetal phases are realized by Hamiltonians capturing the Fermiology of few-layer van der Waals material <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:msub><d:mi>MoTe</d:mi><d:mn>2</d:mn></d:msub></d:math> in experiment. Given the broad experimental interest in few-layer van der Waals materials and topological semimetals, our work paves the way for extensive future theoretical and experimental characterization of finite-size topological phases. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"6 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.035146","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

Topological semimetals are some of the topological phases of matter most intensely studied experimentally. The Weyl semimetal phase, in particular, has garnered tremendous, sustained interest given fascinating signatures such as the Fermi arc surface states and the chiral anomaly, as well as the minimal requirements to protect this three-dimensional (3D) topological phase. Here, we show that thin films of Weyl semimetals [which we call quasi-(3−1)-dimensional, or q(31)D] generically realize finite-size topological phases distinct from 3D and 2D topological phases of established classification schemes: response signatures of the 3D bulk topology coexist with topologically protected, quasi-(32)D Fermi arc states or chiral boundary modes due to a second, previously unidentified bulk-boundary correspondence. We show these finite-size topological semimetal phases are realized by Hamiltonians capturing the Fermiology of few-layer van der Waals material MoTe2 in experiment. Given the broad experimental interest in few-layer van der Waals materials and topological semimetals, our work paves the way for extensive future theoretical and experimental characterization of finite-size topological phases. Published by the American Physical Society 2025
半金属的有限尺寸拓扑相
拓扑半金属是实验研究最多的物质的拓扑相。特别是Weyl半金属相,由于具有迷人的特征,如费米弧表面态和手性异常,以及保护这种三维(3D)拓扑相的最低要求,已经获得了巨大的,持续的兴趣。在这里,我们表明Weyl半金属薄膜[我们称之为准(3−1)维,或q(3−1)D]一般实现有限尺寸的拓扑相不同于已建立的分类方案的3D和2D拓扑相:3D体拓扑的响应特征与拓扑保护,准(3−2)D费米弧态或手性边界模式共存,这是由于第二种先前未识别的体边界对应。我们在实验中证明了这些有限尺寸的拓扑半金属相是由哈密顿量捕获的少层范德华材料MoTe2的费米学实现的。鉴于对少层范德华材料和拓扑半金属的广泛实验兴趣,我们的工作为未来广泛的有限尺寸拓扑相的理论和实验表征铺平了道路。2025年由美国物理学会出版
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信