Noncollinear phase of the antiferromagnetic sawtooth chain

IF 3.7 2区 物理与天体物理 Q1 Physics and Astronomy
Roman Rausch, Christoph Karrasch
{"title":"Noncollinear phase of the antiferromagnetic sawtooth chain","authors":"Roman Rausch, Christoph Karrasch","doi":"10.1103/physrevb.111.045154","DOIUrl":null,"url":null,"abstract":"The antiferromagnetic sawtooth chain is a prototypical example of a frustrated spin system with vertex-sharing triangles, giving rise to complex quantum states. Depending on the interaction parameters, this system has three phases, of which the gapless noncollinear phase (for strongly coupled basal spins and loosely attached apical spins) has received little theoretical attention so far. In this work, we comprehensively investigate the properties of the noncollinear phase using large-scale tensor network computations which exploit the full SU(2) symmetry of the underlying Heisenberg model. We study the ground state both for finite systems using the density-matrix renormalization group (DMRG) as well as for infinite chains via the variational uniform matrix-product state (VUMPS) formalism. Finite temperatures and correlation functions are tackled via imaginary or real time evolutions, which we implement using the time-dependent variational principle (TDVP). We find that the noncollinear phase is characterized by a low-momentum peak and a diffuse tail for the apex-apex correlations. Deep into the phase, the pattern sharpens into a peak indicating a 90</a:mn>∘</a:mo></a:msup></a:math> spiral. The apical spins are soft and highly susceptible to external perturbations; they give rise to a large number of gapless magnetic states that are polarized by weak fields and cause a long low-temperature tail in the specific heat. The dynamic spin-structure factor exhibits additive contributions from a two-spinon continuum (excitations of the basal chain) and a gapless peak at <b:math xmlns:b=\"http://www.w3.org/1998/Math/MathML\"><b:mrow><b:mi>k</b:mi><b:mo>=</b:mo><b:mi>π</b:mi><b:mo>/</b:mo><b:mn>2</b:mn></b:mrow></b:math> (excitations of the apical spins). Small temperatures excite the gapless states and smear the spectral weight of the <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\"><c:mrow><c:mi>k</c:mi><c:mo>=</c:mo><c:mi>π</c:mi><c:mo>/</c:mo><c:mn>2</c:mn></c:mrow></c:math> peak out into a homogeneous flat-band structure. Our results are relevant, e.g., for the material atacamite <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\"><d:mrow><d:msub><d:mi>Cu</d:mi><d:mn>2</d:mn></d:msub><d:mi>Cl</d:mi><d:msub><d:mrow><d:mo>(</d:mo><d:mi>OH</d:mi><d:mo>)</d:mo></d:mrow><d:mn>3</d:mn></d:msub></d:mrow></d:math> in high magnetic fields. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20082,"journal":{"name":"Physical Review B","volume":"22 1","pages":""},"PeriodicalIF":3.7000,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical Review B","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevb.111.045154","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Physics and Astronomy","Score":null,"Total":0}
引用次数: 0

Abstract

The antiferromagnetic sawtooth chain is a prototypical example of a frustrated spin system with vertex-sharing triangles, giving rise to complex quantum states. Depending on the interaction parameters, this system has three phases, of which the gapless noncollinear phase (for strongly coupled basal spins and loosely attached apical spins) has received little theoretical attention so far. In this work, we comprehensively investigate the properties of the noncollinear phase using large-scale tensor network computations which exploit the full SU(2) symmetry of the underlying Heisenberg model. We study the ground state both for finite systems using the density-matrix renormalization group (DMRG) as well as for infinite chains via the variational uniform matrix-product state (VUMPS) formalism. Finite temperatures and correlation functions are tackled via imaginary or real time evolutions, which we implement using the time-dependent variational principle (TDVP). We find that the noncollinear phase is characterized by a low-momentum peak and a diffuse tail for the apex-apex correlations. Deep into the phase, the pattern sharpens into a peak indicating a 90∘ spiral. The apical spins are soft and highly susceptible to external perturbations; they give rise to a large number of gapless magnetic states that are polarized by weak fields and cause a long low-temperature tail in the specific heat. The dynamic spin-structure factor exhibits additive contributions from a two-spinon continuum (excitations of the basal chain) and a gapless peak at k=π/2 (excitations of the apical spins). Small temperatures excite the gapless states and smear the spectral weight of the k=π/2 peak out into a homogeneous flat-band structure. Our results are relevant, e.g., for the material atacamite Cu2Cl(OH)3 in high magnetic fields. Published by the American Physical Society 2025
求助全文
约1分钟内获得全文 求助全文
来源期刊
Physical Review B
Physical Review B 物理-物理:凝聚态物理
CiteScore
6.70
自引率
32.40%
发文量
0
审稿时长
3.0 months
期刊介绍: Physical Review B (PRB) is the world’s largest dedicated physics journal, publishing approximately 100 new, high-quality papers each week. The most highly cited journal in condensed matter physics, PRB provides outstanding depth and breadth of coverage, combined with unrivaled context and background for ongoing research by scientists worldwide. PRB covers the full range of condensed matter, materials physics, and related subfields, including: -Structure and phase transitions -Ferroelectrics and multiferroics -Disordered systems and alloys -Magnetism -Superconductivity -Electronic structure, photonics, and metamaterials -Semiconductors and mesoscopic systems -Surfaces, nanoscience, and two-dimensional materials -Topological states of matter
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信