Plant Pathology最新文献

筛选
英文 中文
Effect of different weight initialization strategies on transfer learning for plant disease detection 不同权重初始化策略对植物病害检测迁移学习的影响
IF 2.7 3区 农林科学
Plant Pathology Pub Date : 2024-09-02 DOI: 10.1111/ppa.13997
Duygu Sinanc Terzi
{"title":"Effect of different weight initialization strategies on transfer learning for plant disease detection","authors":"Duygu Sinanc Terzi","doi":"10.1111/ppa.13997","DOIUrl":"https://doi.org/10.1111/ppa.13997","url":null,"abstract":"The weight initialization technique for transfer learning refers to the practice of using pretrained models that can be modified to solve new problems, instead of starting the training process from scratch. In this study, six different transfer learning weight initialization strategies were proposed for plant disease detection: scratch (i.e., random initialization), pretrained model on cross‐domain (ImageNet), model trained on related domain (ISIC 2019), model trained on related domain (ISIC 2019) with cross‐domain (ImageNet) weights, model trained on same domain (PlantVillage), and model trained on same domain (PlantVillage) with cross‐domain weights (ImageNet). Weights from each strategy were transferred to a target dataset (Plant Pathology 2021). These strategies were implemented using eight deep learning architectures. It was observed that transferring from any strategy led to an average acceleration of convergence ranging from 33.88% to 73.16% in mean loss and an improvement of 8.72%–42.12% in mean F<jats:sub>1</jats:sub>‐score compared to the scratch strategy. Moreover, although smaller and less comprehensive than ImageNet, transferring information from the same domain or related domain proved to be competitive compared to transferring from ImageNet. This indicates that ImageNet, which is widely favoured in the literature, may not necessarily represent the most optimal transfer source for the given context. In addition, to identify which strategies have significant differences, a post hoc analysis using Tukey's HSD test was conducted. Finally, the classifications made by the proposed models were visualized using Grad‐CAM to provide a qualitative understanding of how different weight initialization strategies affect the focus areas of the models.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"40 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genomics‐based plant disease resistance prediction using machine learning 利用机器学习进行基于基因组学的植物抗病性预测
IF 2.7 3区 农林科学
Plant Pathology Pub Date : 2024-08-29 DOI: 10.1111/ppa.13988
Shriprabha R. Upadhyaya, Monica F. Danilevicz, Aria Dolatabadian, Ting Xiang Neik, Fangning Zhang, Hawlader A. Al‐Mamun, Mohammed Bennamoun, Jacqueline Batley, David Edwards
{"title":"Genomics‐based plant disease resistance prediction using machine learning","authors":"Shriprabha R. Upadhyaya, Monica F. Danilevicz, Aria Dolatabadian, Ting Xiang Neik, Fangning Zhang, Hawlader A. Al‐Mamun, Mohammed Bennamoun, Jacqueline Batley, David Edwards","doi":"10.1111/ppa.13988","DOIUrl":"https://doi.org/10.1111/ppa.13988","url":null,"abstract":"Plant disease outbreaks continuously challenge food security and sustainability. Traditional chemical methods used to treat diseases have environmental and health concerns, raising the need to enhance inherent plant disease resistance mechanisms. Traits, including disease resistance, can be linked to specific loci in the genome and identifying these markers facilitates targeted breeding approaches. Several methods, including genome‐wide association studies and genomic selection, have been used to identify important markers and select varieties with desirable traits. However, these traditional approaches may not fully capture the non‐linear characteristics of the effect of genomic variation on traits. Machine learning, known for its data‐mining abilities, offers an opportunity to enhance the accuracy of the existing trait association approaches. It has found applications in predicting various agronomic traits across several species. However, its use in disease resistance prediction remains limited. This review highlights the potential of machine learning as a complementary tool for predicting the genetic loci contributing to pathogen resistance. We provide an overview of traditional trait prediction methods, summarize machine‐learning applications, and address the challenges and opportunities associated with machine learning‐based crop disease resistance prediction.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"16 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii 抗性花生(Arachis hypogaea)基因型和易感花生(Arachis hypogaea)基因型对根瘤菌(Sclerotium rolfsii)引起的茎腐病感染的转录组比较分析
IF 2.7 3区 农林科学
Plant Pathology Pub Date : 2024-08-27 DOI: 10.1111/ppa.13987
Ritisha N. Tatmiya, Shital M. Padhiyar, Sangh Chandramohan, Sandip K. Bera, Shradda B. Bhatt, Mir Asif Iquebal, Padma S. Ambalam, Rukam S. Tomar
{"title":"Comparative transcriptome profiling of resistant and susceptible groundnut (Arachis hypogaea) genotypes in response to stem rot infection caused by Sclerotium rolfsii","authors":"Ritisha N. Tatmiya, Shital M. Padhiyar, Sangh Chandramohan, Sandip K. Bera, Shradda B. Bhatt, Mir Asif Iquebal, Padma S. Ambalam, Rukam S. Tomar","doi":"10.1111/ppa.13987","DOIUrl":"https://doi.org/10.1111/ppa.13987","url":null,"abstract":"This study aimed to explore transcriptomic distinctions between resistant (CS‐319) and susceptible (JAL‐42) groundnut (<jats:italic>Arachis hypogaea</jats:italic>) genotypes exposed to <jats:italic>Sclerotium rolfsii</jats:italic> infection across different developmental stages. Employing a de novo assembly‐based approach, we analysed the transcriptomic response in these groundnut plants under control and infected conditions at 24, 72 and 120 hours post‐inoculation (hpi). Our RNA‐Seq data yielded a total of 133,900,261 reads, revealing 7796 differentially expressed genes (DEGs). We constructed a gene regulatory network with 59 hub genes, identified 6783 transcription factors and uncovered 88,424 putative markers, including 17,236 simple‐sequence repeats (SSRs), 10,099 single‐nucleotide polymorphisms (SNPs) and 78,332 indels. Notably, the majority of DEGs were upregulated at 24 hpi in the resistant genotype, encompassing diverse functional categories such as pathogenesis‐related genes, defence‐related (R) genes, genes involved in plant–fungus interactions, oxidation–reduction‐related genes, transport, metabolism and proteolysis genes, along with transcription factors (FAR1, B3, GATA, NAC, WRKY, MYBC1 and bHLH), secondary metabolic pathway‐related genes and photosynthesis‐related genes. The up‐regulation of WRKY transcripts, associated with the activation of the jasmonic acid defence signalling pathway, potentially induced systemic acquired resistance (SAR). Conversely, these DEGs exhibited down‐regulation in the susceptible genotype. Furthermore, a total of 17,236 expressed sequence tag (EST)‐SSRs were identified from the unigenes, holding significant potential for advancing plant breeding through marker‐assisted methods, facilitating quantitative trait locus (QTL) mapping and evaluating genetic diversity among genotypes. This study's approach contributes to a more profound understanding of the molecular‐level defence mechanisms involved in the interaction between groundnuts and <jats:italic>S</jats:italic>. <jats:italic>rolfsii</jats:italic>.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"24 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The scientific journey to eradicate smuts on the prairies 在草原上消灭烟粉虱的科学之旅
IF 2.7 3区 农林科学
Plant Pathology Pub Date : 2024-08-27 DOI: 10.1111/ppa.13990
Reem Aboukhaddour, Brent D. McCallum, Jim Menzies, Colin Hiebert
{"title":"The scientific journey to eradicate smuts on the prairies","authors":"Reem Aboukhaddour, Brent D. McCallum, Jim Menzies, Colin Hiebert","doi":"10.1111/ppa.13990","DOIUrl":"https://doi.org/10.1111/ppa.13990","url":null,"abstract":"The cultivation of wheat in North America represents a relatively recent endeavour, spanning a mere 150 years. This relatively brief period of its recent cultivation has allowed the opportunity to document the threats and diseases farmers had to face from the start. In this minireview, our primary objective is to provide a detailed exploration of the historical context on how we end up effectively managing what was once among the most destructive and hard to manage diseases affecting wheat, namely, common bunt (covered smut). This review delves into the early research efforts dedicated to understanding the biology of the causal pathogens and developing effective management approaches. These efforts encompass a wide spectrum of potential methods, ranging from seed treatments to cropping practices, and the development of genetic resistance. Throughout this exploration, we will also spotlight the remarkable scientific success story that has unfolded within the Canadian context. In essence, this review aims to provide a scientific examination of the history, challenges and innovative approaches associated with mitigating the impact of bunt pathogens on wheat cultivation in North America, and future challenges.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"22 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diversity and pathogenicity of Fusarium spp. isolated from cultivated sorghum stems and roots in eastern Australia 从澳大利亚东部栽培高粱茎和根中分离出的镰刀菌属的多样性和致病性
IF 2.7 3区 农林科学
Plant Pathology Pub Date : 2024-08-17 DOI: 10.1111/ppa.13985
Niroshini Gunasinghe, Niloofar Vaghefi, Roger G. Shivas, Yu Pei Tan, David Jordan, Emma Mace, Anke Martin
{"title":"Diversity and pathogenicity of Fusarium spp. isolated from cultivated sorghum stems and roots in eastern Australia","authors":"Niroshini Gunasinghe, Niloofar Vaghefi, Roger G. Shivas, Yu Pei Tan, David Jordan, Emma Mace, Anke Martin","doi":"10.1111/ppa.13985","DOIUrl":"https://doi.org/10.1111/ppa.13985","url":null,"abstract":"Stalk and root rots of cultivated sorghum (<jats:italic>Sorghum bicolor</jats:italic>) are caused by several <jats:italic>Fusarium</jats:italic> species worldwide. This study evaluated <jats:italic>Fusarium</jats:italic> diversity, pathogenicity and population structure amongst 212 isolates obtained from 169 sorghum plants from commercial field crops in eastern Australia. Sequences of translation elongation factor‐1α (<jats:italic>tef‐1α</jats:italic>), RNA polymerase II largest subunit (<jats:italic>rpb1</jats:italic>), RNA polymerase II second largest subunit (<jats:italic>rpb2</jats:italic>) and calmodulin (<jats:italic>cmdA</jats:italic>) were used to construct multilocus phylogenies that enabled the identification of 16 <jats:italic>Fusarium</jats:italic> species in <jats:italic>Fusarium chlamydosporum</jats:italic> species complex (FCSC), <jats:italic>Fusarium fujikuroi</jats:italic> species complex (FFSC), <jats:italic>Fusarium incarnatum‐equiseti</jats:italic> species complex and <jats:italic>Fusarium oxysporum</jats:italic> species complex (FOSC). The majority of isolates (<jats:italic>n</jats:italic> = 171) belonged to FFSC. The pathogenicity of 17 selected isolates was determined by artificial inoculation of sorghum seedlings and completing Koch's postulates. Isolates of species in FFSC were significantly (<jats:italic>p</jats:italic> &lt; 0.05) more aggressive as root pathogens in sorghum seedlings than isolates of other species tested and widely distributed across all sampling sites. Amongst the 35 isolates of FOSC, 26 belonged to <jats:italic>Fusarium cili</jats:italic>, which is only known as an endophyte from healthy roots of <jats:italic>Rosa roxburghii</jats:italic> in China. <jats:italic>Fusarium sporodochiale</jats:italic> (in FCSC) and <jats:italic>Fusarium contaminatum</jats:italic> (in FOSC) are reported as sorghum seedling root rot pathogens for the first time.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"11 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fungicidal activity and molecular docking of glycerol‐derived triazole compounds for controlling coffee leaf rust 用于防治咖啡叶锈病的甘油衍生三唑化合物的杀菌活性和分子对接
IF 2.7 3区 农林科学
Plant Pathology Pub Date : 2024-08-14 DOI: 10.1111/ppa.13986
Tatiane Paulino da Cruz, Matheus Ricardo da Rocha, Sophia Machado Ferreira da Silva, Willian Bucker Moraes, Simone de Paiva Caetano Bucker Moraes, Poliana Aparecida Rodrigues Gazolla, Mariana Belizário de Oliveira, Vagner Tebaldi de Queiroz, Róbson Ricardo Teixeira, Osmair Vital de Oliveira, Juliana Alves Resende, Adilson Vidal Costa, Waldir Cintra de Jesus Junior
{"title":"Fungicidal activity and molecular docking of glycerol‐derived triazole compounds for controlling coffee leaf rust","authors":"Tatiane Paulino da Cruz, Matheus Ricardo da Rocha, Sophia Machado Ferreira da Silva, Willian Bucker Moraes, Simone de Paiva Caetano Bucker Moraes, Poliana Aparecida Rodrigues Gazolla, Mariana Belizário de Oliveira, Vagner Tebaldi de Queiroz, Róbson Ricardo Teixeira, Osmair Vital de Oliveira, Juliana Alves Resende, Adilson Vidal Costa, Waldir Cintra de Jesus Junior","doi":"10.1111/ppa.13986","DOIUrl":"https://doi.org/10.1111/ppa.13986","url":null,"abstract":"Coffee leaf rust (CLR), caused by <jats:italic>Hemileia vastatrix</jats:italic>, poses a significant threat to global coffee production, resulting in substantial economic losses. This study explores the effectiveness of triazole derivatives synthesized from glycerol in controlling CLR in conilon coffee (<jats:italic>Coffea canephora</jats:italic>). In vitro assays evaluated the inhibitory effect of triazole derivatives (4a–4q) at concentrations of 10, 25, 50, 75 and 100 ppm on <jats:italic>H</jats:italic>. <jats:italic>vastatrix</jats:italic> urediniospore germination, followed by greenhouse experiments to assess their preventive and curative potential. Preventive and curative sprayings of the four most efficient triazoles were conducted on seedlings inoculated with <jats:italic>H</jats:italic>. <jats:italic>vastatrix</jats:italic> at concentrations ranging from 0 to 400 ppm, evaluating severity, sporulation, incubation and latent periods. Triazole derivatives 4b, 4d, 4f and 4o effectively suppressed <jats:italic>H</jats:italic>. <jats:italic>vastatrix</jats:italic> urediniospore germination, achieving reductions between 9.9% and 78.8%. In greenhouse trials, these compounds demonstrated preventive efficacy by prolonging incubation and latent periods, reducing sporulation and mitigating rust severity, with triazole 4f exhibiting the highest efficiency. Furthermore, the derivatives showed effectiveness in curative treatments, particularly triazole 4f. Physiological analyses indicated no significant alterations in coffee plant metabolism, suggesting the safety of these compounds for agricultural use. Molecular docking studies elucidated their mechanism of action, suggesting their potential as antifungal agents by interacting with the HvCYP51 enzyme involved in ergosterol biosynthesis. Overall, the study underscores the promising efficacy of glycerol‐derived triazole derivatives in managing CLR, providing sustainable solutions for disease control in agriculture.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"2 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saccharin induces resistance against Pseudomonas syringae pv. actinidiae (Psa biovar 3) in glasshouse kiwifruit and orchard vines 糖精诱导玻璃温室猕猴桃和果园葡萄藤产生抗淀粉样假单胞菌 pv. actinidiae (Psa biovar 3) 的能力
IF 2.7 3区 农林科学
Plant Pathology Pub Date : 2024-08-12 DOI: 10.1111/ppa.13984
Tony Reglinski, Kirstin Wurms, Grant Northcott, Joseph Taylor, Annette Ah Chee, Frank Parry, Christina Fehlmann, Janine Cooney, Dwayne Jensen, Philip Elmer, Stephen Hoyte, Catherine McKenzie, Duncan Hedderley
{"title":"Saccharin induces resistance against Pseudomonas syringae pv. actinidiae (Psa biovar 3) in glasshouse kiwifruit and orchard vines","authors":"Tony Reglinski, Kirstin Wurms, Grant Northcott, Joseph Taylor, Annette Ah Chee, Frank Parry, Christina Fehlmann, Janine Cooney, Dwayne Jensen, Philip Elmer, Stephen Hoyte, Catherine McKenzie, Duncan Hedderley","doi":"10.1111/ppa.13984","DOIUrl":"https://doi.org/10.1111/ppa.13984","url":null,"abstract":"The artificial sweetener saccharin has been reported to enhance resistance against pathogen attack in various plant species. In this study, foliar application of saccharin resulted in increased resistance to leaf infection by <jats:italic>Pseudomonas syringae</jats:italic> pv. <jats:italic>actinidiae</jats:italic> biovar 3 (Psa) in two <jats:italic>Actinidia chinensis</jats:italic> cultivars, Hayward and Zesy002. In glasshouse plants, the application of saccharin at 0.25, 0.5, 1.0 and 2.0 g/L, 1 week before inoculation with Psa, induced a dose‐dependent reduction in leaf necrosis in both cultivars. Saccharin at 2.0 g/L reduced leaf necrosis in Hayward by 77% and in Zesy002 by over 90%. However, saccharin (2.0 g/L) did not inhibit growth of Psa in liquid media, thus suggesting induced resistance (IR) as the primary mode of action against leaf infection. The development of IR in both cultivars was concomitant with the accumulation of salicylic acid (SA) and salicylate glycoside (SAG), and the upregulation of SA‐pathway genes (<jats:italic>PR1</jats:italic> and <jats:italic>PR2</jats:italic>) in treated leaves. In orchard‐grown Hayward vines, saccharin (1.0 g/L) induced the upregulation of SA‐pathway genes and reduced Psa leaf necrosis and flower bud rot by 50% and 25%, respectively, compared with controls. However, saccharin residues were detected in fruit collected from vines that were sprayed with saccharin (1.0 g/L) before flowering. Residue level correlated with application frequency and timing and was highest (0.051 mg/kg) in vines that received three preflowering sprays. This exceeds the default maximum residue limit (MRL; 0.01 mg/kg) for some export markets and could limit the use of saccharin for disease management.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"12 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142183775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Antifungal activity of Bacillus velezensis and Pseudomonas azotoformans isolated from compost tea against anthracnose (Colletotrichum spp.) on strawberry fruit 从堆肥茶中分离出的枯草芽孢杆菌(Bacillus velezensis)和假单胞菌(Pseudomonas azotoformans)对草莓果实炭疽病(Colletotrichum spp.
IF 2.7 3区 农林科学
Plant Pathology Pub Date : 2024-08-06 DOI: 10.1111/ppa.13983
Irina Popescu, A. Kiripuvaney Loganathan, Hailey R. Graham, Tyler J. Avis
{"title":"Antifungal activity of Bacillus velezensis and Pseudomonas azotoformans isolated from compost tea against anthracnose (Colletotrichum spp.) on strawberry fruit","authors":"Irina Popescu, A. Kiripuvaney Loganathan, Hailey R. Graham, Tyler J. Avis","doi":"10.1111/ppa.13983","DOIUrl":"https://doi.org/10.1111/ppa.13983","url":null,"abstract":"Anthracnose, caused by <jats:italic>Colletotrichum</jats:italic> spp., is a threat to strawberry production globally. Unlike their chemical counterparts, microbial biofungicides offer a method of postharvest fungal disease control that is safe, sustainable and less affected by pathogen resistance. The present study evaluated the antifungal effects of three bacteria, <jats:italic>Bacillus velezensis</jats:italic> strains SH1 and SH2 and <jats:italic>Pseudomonas azotoformans</jats:italic> strain SH3, obtained from sheep manure compost tea. The bacteria or their cell‐free filtrates were tested against <jats:italic>Colletotrichum acutatum</jats:italic> and <jats:italic>Colletotrichum gloeosporioides</jats:italic> in bioassays and against strawberry anthracnose. In addition, precipitated or extracted extracellular fractions were tested to determine the effects on membrane permeability of <jats:italic>Colletotrichum</jats:italic> spp. spores. Confrontation assay results showed all bacteria inhibited mycelial growth, with <jats:italic>B</jats:italic>. <jats:italic>velezensis</jats:italic> SH1 and <jats:italic>P</jats:italic>. <jats:italic>azotoformans</jats:italic> SH3 being the most effective. All cell‐free filtrates inhibited mycelial growth with <jats:italic>B</jats:italic>. <jats:italic>velezensis</jats:italic> SH1 and SH2 resulting in the highest inhibition. The bacteria suppressed anthracnose lesions on strawberry fruit although effective treatments varied by causal mould. <jats:italic>B. velezensis</jats:italic> SH1 and SH2 significantly permeabilized spore membranes, indicating antibiosis as a possible mode of action. Investigation into antimicrobial compound production found various homologues of the lipopeptides fengycin, iturin and surfactin were produced by <jats:italic>B</jats:italic>. <jats:italic>velezensis</jats:italic> SH1 and SH2. Results suggest that lipopeptides produced by <jats:italic>B</jats:italic>. <jats:italic>velezensis</jats:italic> strains permeabilize <jats:italic>Colletotrichum</jats:italic> cell membranes, and that fengycins were the most inhibitory of the lipopeptides against <jats:italic>Colletotrichum</jats:italic> spp.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"38 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141969169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two new qPCR assays for detecting and quantifying the Aspergillus flavus and Aspergillus parasiticus clades in maize kernels 用于检测和量化玉米粒中黄曲霉和寄生曲霉支系的两种新型 qPCR 检测方法
IF 2.7 3区 农林科学
Plant Pathology Pub Date : 2024-08-06 DOI: 10.1111/ppa.13982
Alexandre Leharanger, Delphine Paumier, Beatrice Orlando, Sylviane Bailly, Romain Valade
{"title":"Two new qPCR assays for detecting and quantifying the Aspergillus flavus and Aspergillus parasiticus clades in maize kernels","authors":"Alexandre Leharanger, Delphine Paumier, Beatrice Orlando, Sylviane Bailly, Romain Valade","doi":"10.1111/ppa.13982","DOIUrl":"https://doi.org/10.1111/ppa.13982","url":null,"abstract":"The fungi of <jats:italic>Aspergillus</jats:italic> section <jats:italic>Flavi</jats:italic> can produce carcinogenic mycotoxins—aflatoxins (AFs)—of two types: types B and G (AFBs and AFGs). AFs are highly hazardous for human and animal health. Their levels in food and feed are therefore highly regulated, with a low acceptable limit for AF content. In France, climate change has led to the detection of AFs in maize harvests since 2015. Mycoflora analyses have identified two species, <jats:italic>A</jats:italic>. <jats:italic>flavus</jats:italic> (producing AFBs) and <jats:italic>A</jats:italic>. <jats:italic>parasiticus</jats:italic> (producing both AFBs and AFGs), as responsible for this AF contamination. However, mycoflora analysis is a time‐consuming method that cannot readily be applied to large numbers of samples. We propose here an alternative clade‐specific functional TaqMan quantitative PCR method based on the calmodulin gene for distinguishing between the <jats:italic>A</jats:italic>. <jats:italic>flavus</jats:italic> clade (AfC) and the <jats:italic>A</jats:italic>. <jats:italic>parasiticus</jats:italic> clade (ApC). We applied this method to 553 maize samples collected in three different harvest years (2018–2020). Both clades were detected in about 40% of the samples tested. As expected, we observed significant positive correlations between AFBs and AfC DNA (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.708), and between AFGs and ApC DNA (<jats:italic>R</jats:italic><jats:sup>2</jats:sup> = 0.885). This method will be useful for the rapid, simple and cheap characterization of maize grain contamination with <jats:italic>Aspergillus</jats:italic> section <jats:italic>Flavi</jats:italic>. This method will make it possible to study the relationship between agroclimatic conditions, AF content and species prevalence, to facilitate the anticipation of AF risks due to global warming in France.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"4 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940496","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Myrtus communis leaf extracts repel Meloidogyne spp. second‐stage juveniles and prevent root infection 桃金娘叶提取物可驱除 Meloidogyne spp.第二阶段幼虫并防止根部感染
IF 2.7 3区 农林科学
Plant Pathology Pub Date : 2024-08-03 DOI: 10.1111/ppa.13981
Yuji Oka
{"title":"Myrtus communis leaf extracts repel Meloidogyne spp. second‐stage juveniles and prevent root infection","authors":"Yuji Oka","doi":"10.1111/ppa.13981","DOIUrl":"https://doi.org/10.1111/ppa.13981","url":null,"abstract":"The use of repellents for nematode control has not been established. Leaf extracts of <jats:italic>Myrtus communis</jats:italic>, an evergreen shrub with wide distribution in the Mediterranean and some other regions, were tested for repellence of second‐stage juveniles (J2s) of <jats:italic>Meloidogyne</jats:italic> species. Extracts obtained with several solvents and water repelled <jats:italic>M</jats:italic>. <jats:italic>javanica</jats:italic> J2s on agar plates, with the 60% methanol extract showing the highest repellent activity. <jats:italic>M</jats:italic>. <jats:italic>hapla</jats:italic> J2s were also repelled by the aqueous and 60% methanol extracts. Adding the 60% methanol extract to fluopyram, a chemical J2 attractant, reduced and abolished, respectively, the attraction of <jats:italic>M</jats:italic>. <jats:italic>javanica</jats:italic> and <jats:italic>M</jats:italic>. <jats:italic>hapla</jats:italic> J2s to it. When the methanolic extract was added near lettuce seedling roots on an agar plate, the number of <jats:italic>M</jats:italic>. <jats:italic>javanica</jats:italic>, <jats:italic>M</jats:italic>. <jats:italic>incognita</jats:italic> and <jats:italic>M</jats:italic>. <jats:italic>hapla</jats:italic> J2s attracted to the root tips was reduced by 70.0%–98.2%, infection rates decreased by 50.1%–95.8% and root length increased by 61.8%–186.7% compared to control seedlings grown on the same plates. When the methanol extract was mixed into the agar plate, the three <jats:italic>Meloidogyne</jats:italic> species' attraction to and infection of lettuce seedlings was reduced by up to 75.4% and 100%, respectively, and root length increased up to 3.4‐fold. The acetone extract mixed into the agar reduced the attraction of <jats:italic>M</jats:italic>. <jats:italic>javanica</jats:italic> J2s to fluopyram but did not affect their repellence by KNO<jats:sub>3</jats:sub>. The results suggest that <jats:italic>M</jats:italic>. <jats:italic>communis</jats:italic> leaf extracts have repellent and infection‐inhibitory activity against <jats:italic>Meloidogyne</jats:italic> J2, offering potential control means for <jats:italic>Meloidogyne</jats:italic> species.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"56 1","pages":""},"PeriodicalIF":2.7,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141940497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信