Angélica Maria Nogueira, Cíntia Sabino de Oliveira, Vinicius Henrique Bello, Gabriel Madoglio Favara, Eduardo Vicentin, Julio Massaharu Marubayashi, Caroline da Cruz Martines, Luis Fernando Maranho Watanabe, Tarsiane Mara Carneiro Barbosa, Daniel de Lima Alvarez, Regiane Cristina de Oliveira, Francisco Murilo Zerbini, Jorge Alberto Marques Rezende, Renate Krause‐Sakate
{"title":"Populations of Bemisia tabaci Mediterranean in São Paulo state are inefficient vectors of Brazilian begomoviruses","authors":"Angélica Maria Nogueira, Cíntia Sabino de Oliveira, Vinicius Henrique Bello, Gabriel Madoglio Favara, Eduardo Vicentin, Julio Massaharu Marubayashi, Caroline da Cruz Martines, Luis Fernando Maranho Watanabe, Tarsiane Mara Carneiro Barbosa, Daniel de Lima Alvarez, Regiane Cristina de Oliveira, Francisco Murilo Zerbini, Jorge Alberto Marques Rezende, Renate Krause‐Sakate","doi":"10.1111/ppa.13970","DOIUrl":null,"url":null,"abstract":"Begomoviruses cause losses in several crops around the world. Whiteflies of the <jats:italic>Bemisia tabaci</jats:italic> cryptic species MEAM1 and MED are efficient vectors of begomoviruses. MEAM1 has been the predominant species in Brazil since the mid‐1990s. MED was detected in Brazil in 2014, and since then, high insect infestations have been reported, mainly in greenhouse production of solanaceous crops. In this study, we compared the transmission efficiency of the begomoviruses tomato severe rugose virus (ToSRV) and tomato rugose mosaic virus (ToRMV) to tomato (<jats:italic>Solanum lycopersicum</jats:italic>) and bean golden mosaic virus (BGMV) to common bean (<jats:italic>Phaseolus vulgaris</jats:italic>) by a population of MEAM1 and four populations of MED. <jats:italic>B</jats:italic>. <jats:italic>tabaci</jats:italic> MEAM1 efficiently transmitted ToSRV and ToRMV to tomato and BGMV to common bean. <jats:italic>B</jats:italic>. <jats:italic>tabaci</jats:italic> MED populations did not transmit ToSRV and ToRMV to tomato. Only one population of <jats:italic>B</jats:italic>. <jats:italic>tabaci</jats:italic> MED transmitted BGMV with an efficiency of 3%. PCR analysis indicated that <jats:italic>B</jats:italic>. <jats:italic>tabaci</jats:italic> MED can acquire ToSRV, ToRMV and BGMV after a 24 h acquisition access period. Furthermore, some greenhouse tomato plantings from São Paulo state were surveyed for the presence of viruses and whiteflies, and <jats:italic>B</jats:italic>. <jats:italic>tabaci</jats:italic> MED were predominant, whereas begomoviruses were absent. Our results demonstrate that populations of MED from São Paulo state are inefficient vectors of begomoviruses, being able to acquire the virus but not transmit it to plants. Understanding this interaction is important and suggests that the spread of <jats:italic>B</jats:italic>. <jats:italic>tabaci</jats:italic> MED could change the epidemiological scenario of begomoviruses in areas where this insect predominates.","PeriodicalId":20075,"journal":{"name":"Plant Pathology","volume":"50 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Pathology","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1111/ppa.13970","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"AGRONOMY","Score":null,"Total":0}
引用次数: 0
Abstract
Begomoviruses cause losses in several crops around the world. Whiteflies of the Bemisia tabaci cryptic species MEAM1 and MED are efficient vectors of begomoviruses. MEAM1 has been the predominant species in Brazil since the mid‐1990s. MED was detected in Brazil in 2014, and since then, high insect infestations have been reported, mainly in greenhouse production of solanaceous crops. In this study, we compared the transmission efficiency of the begomoviruses tomato severe rugose virus (ToSRV) and tomato rugose mosaic virus (ToRMV) to tomato (Solanum lycopersicum) and bean golden mosaic virus (BGMV) to common bean (Phaseolus vulgaris) by a population of MEAM1 and four populations of MED. B. tabaci MEAM1 efficiently transmitted ToSRV and ToRMV to tomato and BGMV to common bean. B. tabaci MED populations did not transmit ToSRV and ToRMV to tomato. Only one population of B. tabaci MED transmitted BGMV with an efficiency of 3%. PCR analysis indicated that B. tabaci MED can acquire ToSRV, ToRMV and BGMV after a 24 h acquisition access period. Furthermore, some greenhouse tomato plantings from São Paulo state were surveyed for the presence of viruses and whiteflies, and B. tabaci MED were predominant, whereas begomoviruses were absent. Our results demonstrate that populations of MED from São Paulo state are inefficient vectors of begomoviruses, being able to acquire the virus but not transmit it to plants. Understanding this interaction is important and suggests that the spread of B. tabaci MED could change the epidemiological scenario of begomoviruses in areas where this insect predominates.
期刊介绍:
This international journal, owned and edited by the British Society for Plant Pathology, covers all aspects of plant pathology and reaches subscribers in 80 countries. Top quality original research papers and critical reviews from around the world cover: diseases of temperate and tropical plants caused by fungi, bacteria, viruses, phytoplasmas and nematodes; physiological, biochemical, molecular, ecological, genetic and economic aspects of plant pathology; disease epidemiology and modelling; disease appraisal and crop loss assessment; and plant disease control and disease-related crop management.