Urmimala Dey, Emma E. McCabe, Jorge Íñiguez-González, Nicholas C. Bristowe
{"title":"Prediction of Room Temperature Electric Field Reversal of Magnetization in the Family of A4B3O9 Layered Oxides","authors":"Urmimala Dey, Emma E. McCabe, Jorge Íñiguez-González, Nicholas C. Bristowe","doi":"10.1103/physrevlett.134.136801","DOIUrl":"https://doi.org/10.1103/physrevlett.134.136801","url":null,"abstract":"The promise of a strong magnetoelectric coupling in a multiferroic material is not only of fundamental interest, but also forms the basis of next generation memory devices where the direction of magnetization can be reversed by an external electric field. Using group-theory led first-principles calculations, we have identified a hitherto unknown polar phase of the A</a:mi>4</a:mn></a:msub>B</a:mi>3</a:mn></a:msub>O</a:mi>9</a:mn></a:msub></a:math> layered oxides, where the polar mode couples to the magnetic modes through a rare <d:math xmlns:d=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><d:mi mathvariant=\"normal\">Γ</d:mi></d:math>-point magnetoelectric-multiferroic coupling scheme such that the net magnetization can be directly reversed by an electric field switching of the polar mode. Furthermore, in agreement with previous experimental observations, we predict room temperature magnetism in <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:msub><g:mi>A</g:mi><g:mn>4</g:mn></g:msub><g:msub><g:mi>B</g:mi><g:mn>3</g:mn></g:msub><g:msub><g:mi mathvariant=\"normal\">O</g:mi><g:mn>9</g:mn></g:msub></g:math> oxides that indicates the promising practical applications of these compounds in the next generation memory devices. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"12 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143757784","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yue Chen, Haoran Chen, Xi Shen, Weizhao Chen, Yi Liu, Yizheng Wu, Zhe Yuan
{"title":"Orbital-Excitation-Dominated Magnetization Dissipation and Quantum Oscillation of Gilbert Damping in Fe Films","authors":"Yue Chen, Haoran Chen, Xi Shen, Weizhao Chen, Yi Liu, Yizheng Wu, Zhe Yuan","doi":"10.1103/physrevlett.134.136701","DOIUrl":"https://doi.org/10.1103/physrevlett.134.136701","url":null,"abstract":"Using first-principles electronic structure calculation, we demonstrate the spin dissipation process in bulk Fe by orbital excitations within the energy bands of pure spin character. The variation of orbitals in the intraband transitions provides an efficient channel to convert spin to orbital angular momentum with spin-orbit interaction. This mechanism dominates the Gilbert damping of Fe below room temperature. The theoretical prediction is confirmed by the ferromagnetic resonance experiment performed on single-crystal Fe(001) films. A significant thickness-dependent damping oscillation is found at low temperature induced by the quantum well states of the corresponding energy bands. Our findings not only explain the microscopic nature of the recently reported ultralow damping of Fe-based alloys but also help for the understanding of the transport and dissipation process of orbital currents. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"38 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Claudia Castillo-Moreno, Kazi Rafsanjani Amin, Ingrid Strandberg, Mikael Kervinen, Amr Osman, Simone Gasparinetti
{"title":"Dynamical Excitation Control and Multimode Emission of an Atom-Photon Bound State","authors":"Claudia Castillo-Moreno, Kazi Rafsanjani Amin, Ingrid Strandberg, Mikael Kervinen, Amr Osman, Simone Gasparinetti","doi":"10.1103/physrevlett.134.133601","DOIUrl":"https://doi.org/10.1103/physrevlett.134.133601","url":null,"abstract":"Atom-photon bound states arise from the coupling of quantum emitters to the band edge of dispersion-engineered waveguides. Thanks to their tunable-range interactions, they are promising building blocks for quantum simulators. Here, we study the dynamics of an atom-photon bound state emerging from coupling a frequency-tunable quantum emitter—a transmon-type superconducting circuit—to the band edge of a microwave metamaterial. Employing precise temporal control over the frequency detuning of the emitter from the band edge, we examine the transition from adiabatic to nonadiabatic behavior in the formation of the bound state and its melting into the propagating modes of the metamaterial. Moreover, we experimentally observe multimode emission from the bound state, triggered by a fast change of the emitter’s frequency. Our Letter offers insight into the dynamic preparation of APBS and provides a method to characterize their photonic content, with implications in quantum optics and quantum simulation. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"280 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Petri J. Heikkinen, Lev V. Levitin, Xavier Rojas, Angadjit Singh, Nathan Eng, Andrew Casey, John Saunders, Anton Vorontsov, Nikolay Zhelev, Abhilash Thanniyil Sebastian, Jeevak M. Parpia
{"title":"Chiral Superfluid Helium-3 in the Quasi-Two-Dimensional Limit","authors":"Petri J. Heikkinen, Lev V. Levitin, Xavier Rojas, Angadjit Singh, Nathan Eng, Andrew Casey, John Saunders, Anton Vorontsov, Nikolay Zhelev, Abhilash Thanniyil Sebastian, Jeevak M. Parpia","doi":"10.1103/physrevlett.134.136001","DOIUrl":"https://doi.org/10.1103/physrevlett.134.136001","url":null,"abstract":"Anisotropic pair breaking close to surfaces favors the chiral A</a:mi></a:math> phase of the superfluid <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mrow><c:mmultiscripts><c:mrow><c:mi>He</c:mi></c:mrow><c:mprescripts/><c:none/><c:mrow><c:mn>3</c:mn></c:mrow></c:mmultiscripts></c:mrow></c:math> over the time-reversal invariant <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>B</e:mi></e:math> phase. Confining the superfluid <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mmultiscripts><g:mrow><g:mi>He</g:mi></g:mrow><g:mprescripts/><g:none/><g:mrow><g:mn>3</g:mn></g:mrow></g:mmultiscripts></g:mrow></g:math> into a cavity of height <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>D</i:mi></i:math> of the order of the Cooper pair size characterized by the coherence length <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:msub><k:mi>ξ</k:mi><k:mn>0</k:mn></k:msub></k:math>—ranging between 16 nm (34 bar) and 77 nm (0 bar)—extends the surface effects over the whole sample volume, thus allowing stabilization of the <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>A</m:mi></m:math> phase at pressures <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>P</o:mi></o:math> and temperatures <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>T</q:mi></q:math> where otherwise the <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>B</s:mi></s:math> phase would be stable. In this Letter, the surfaces of such a confined sample are covered with a superfluid <u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mrow><u:mmultiscripts><u:mrow><u:mi>He</u:mi></u:mrow><u:mprescripts/><u:none/><u:mrow><u:mn>4</u:mn></u:mrow></u:mmultiscripts></u:mrow></u:math> film to create specular quasiparticle scattering boundary conditions, preventing the suppression of the superfluid order parameter. We show that the chiral <w:math xmlns:w=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><w:mi>A</w:mi></w:math> phase is the stable superfluid phase under strong confinement over the full <y:math xmlns:y=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><y:mrow><y:mi>P</y:mi><y:mtext>−</y:mtext><y:mi>T</y:mi></y:mrow></y:math> phase diagram down to a quasi-two-dimensional limit D</ab:mi>/</ab:mo>ξ</ab:mi>0</ab:mn></ab:msub>=</ab:mo>1</ab:mn></ab:math>, where <cb:math xmlns:cb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><cb:mi>D</cb:mi><cb:mo>=</cb:mo><cb:mn>80</cb:mn><cb:mtext> </cb:mtext><cb:mtext> </cb:mtext><cb:mi>nm</cb:mi></cb:math>. The planar phase, which is degenerate with the chiral <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>A</eb:mi></eb:math> phase in the weak-coupling limit, is not observed. The gap inferred from measurements over the wide pressure range from 0.2 t","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"33 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Closed Band-Projected Density Algebra Must Be Girvin-MacDonald-Platzman","authors":"Ziwei Wang, Steven H. Simon","doi":"10.1103/physrevlett.134.136502","DOIUrl":"https://doi.org/10.1103/physrevlett.134.136502","url":null,"abstract":"The band-projected density operators in a Landau level obey the Girvin-MacDonald-Platzman (GMP) algebra, and a large amount of effort in the study of fractional Chern insulators has been directed toward approximating this algebra in a Chern band. In this Letter, we prove that the GMP algebra, up to form factors, is the closed algebra that projected density operators can satisfy in two and three dimensions, highlighting the central place it occupies in the study of Chern bands in general. A number of interesting corollaries follow. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"58 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Shahrazad M. A. Malek, Francesco Sciortino, Peter H. Poole, Ivan Saika-Voivod
{"title":"Liquid-Liquid Phase Transition in Simulated Supercooled Water Nanodroplets","authors":"Shahrazad M. A. Malek, Francesco Sciortino, Peter H. Poole, Ivan Saika-Voivod","doi":"10.1103/physrevlett.134.138001","DOIUrl":"https://doi.org/10.1103/physrevlett.134.138001","url":null,"abstract":"Using simulations, we demonstrate how a liquid-liquid phase transition (LLPT) manifests in supercooled water nanodroplets. Selecting an interaction potential for which a LLPT occurs in the bulk liquid, we conduct simulations of supercooled water nanodroplets having between 1000 and 80000 molecules. We show that as the droplet size decreases, the Laplace pressure grows large enough to drive the droplets through the transition from the low-density to the high-density liquid phase, and that all droplets in this size range are large enough to have cores exhibiting the structure and properties of bulk water. To guide experiments, we estimate the range of values for the critical pressure of the LLPT in real water that can be observed using nanodroplets, and propose structural and dynamical measures by which the LLPT in nanodroplets can be detected. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"36 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Four-Loop Anomalous Dimension of Flavor Nonsinglet Twist-Two Operator of General Lorentz Spin in QCD: ζ(3) Term","authors":"B. A. Kniehl, V. N. Velizhanin","doi":"10.1103/physrevlett.134.131901","DOIUrl":"https://doi.org/10.1103/physrevlett.134.131901","url":null,"abstract":"We consider the anomalous dimension of the flavor nonsinglet twist-two quark operator of arbitrary Lorentz spin N</a:mi></a:math> at four loops in QCD and construct its contribution proportional to <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>ζ</c:mi><c:mo stretchy=\"false\">(</c:mo><c:mn>3</c:mn><c:mo stretchy=\"false\">)</c:mo></c:math> in analytic form by applying advanced methods of number theory on the available knowledge of low-<g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mi>N</g:mi></g:math> moments. In conjunction with similar results on the <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:mi>ζ</i:mi><i:mo stretchy=\"false\">(</i:mo><i:mn>5</i:mn><i:mo stretchy=\"false\">)</i:mo></i:math> and <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><m:mi>ζ</m:mi><m:mo stretchy=\"false\">(</m:mo><m:mn>4</m:mn><m:mo stretchy=\"false\">)</m:mo></m:math> contributions, this completes our knowledge of the transcendental part of the considered anomalous dimension. This also provides important constraints on the as-yet elusive all-<q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mi>N</q:mi></q:math> form of the rational part. Via Mellin transformation, we thus obtain the exact functional form in <s:math xmlns:s=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><s:mi>x</s:mi></s:math> of the respective piece of the nonsinglet Dokshitzer-Gribov-Lipatov-Altarelli-Parisi splitting function at four loops. This allows us to appreciably reduce the theoretical uncertainty in the approximation of that splitting function otherwise amenable from the first few low-<u:math xmlns:u=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><u:mi>N</u:mi></u:math> moments. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"183 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Geometric Interpretation of Timelike Entanglement Entropy","authors":"Michal P. Heller, Fabio Ori, Alexandre Serantes","doi":"10.1103/physrevlett.134.131601","DOIUrl":"https://doi.org/10.1103/physrevlett.134.131601","url":null,"abstract":"Analytic continuations of holographic entanglement entropy in which the boundary subregion extends along a timelike direction have brought a promise of a novel, time-centric probe of the emergence of spacetime. We propose that the bulk carriers of this holographic timelike entanglement entropy are boundary-anchored extremal surfaces probing analytic continuation of holographic spacetimes into complex coordinates. This proposal not only provides a geometric interpretation of all the known cases obtained by direct analytic continuation of closed-form expressions of holographic entanglement entropy of a strip subregion but crucially also opens a window to study holographic timelike entanglement entropy in full generality. We initialize the investigation of complex extremal surfaces anchored on a timelike strip at the boundary of anti-de Sitter black branes. We find multiple complex extremal surfaces and discuss possible principles singling out the physical contribution. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"19 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744857","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bojan Žunkovič, Pietro Torta, Giovanni Pecci, Guglielmo Lami, Mario Collura
{"title":"Variational Ground-State Quantum Adiabatic Theorem","authors":"Bojan Žunkovič, Pietro Torta, Giovanni Pecci, Guglielmo Lami, Mario Collura","doi":"10.1103/physrevlett.134.130601","DOIUrl":"https://doi.org/10.1103/physrevlett.134.130601","url":null,"abstract":"We present a variational quantum adiabatic theorem, which states that, under certain assumptions, the adiabatic dynamics projected onto a variational manifold follow the instantaneous variational ground state. We focus on low-entanglement variational manifolds and target Hamiltonians with classical ground states. Despite highly entangled intermediate states along the exact adiabatic path, the variational evolution converges to the target ground state. We demonstrate this approach with several examples that align with our theoretical analysis. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"223 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143744860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Universal and Nonuniversal Signatures in the Scaling Functions of Critical Variables","authors":"Gianluca Teza, Attilio L. Stella","doi":"10.1103/physrevlett.134.127102","DOIUrl":"https://doi.org/10.1103/physrevlett.134.127102","url":null,"abstract":"At criticality, the magnetization M</a:mi></a:mrow></a:math> of a <c:math xmlns:c=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><c:mi>d</c:mi></c:math>-dimensional Ising system with <e:math xmlns:e=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><e:mi>N</e:mi></e:math> spins is distributed such that the probability density function of <g:math xmlns:g=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><g:mrow><g:mi>m</g:mi><g:mo>=</g:mo><g:mi>M</g:mi><g:mo>/</g:mo><g:msup><g:mrow><g:mi>N</g:mi></g:mrow><g:mrow><g:msub><g:mrow><g:mi>y</g:mi></g:mrow><g:mrow><g:mi>H</g:mi></g:mrow></g:msub><g:mo>/</g:mo><g:mi>d</g:mi></g:mrow></g:msup></g:mrow></g:math>, with <i:math xmlns:i=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><i:msub><i:mi>y</i:mi><i:mi>H</i:mi></i:msub></i:math> universal exponent, converges to a limit <k:math xmlns:k=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><k:mi>f</k:mi><k:mo stretchy=\"false\">(</k:mo><k:mi>m</k:mi><k:mo stretchy=\"false\">)</k:mo></k:math>. The expectation that <o:math xmlns:o=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><o:mi>f</o:mi></o:math> should furnish a hallmark of universal behavior contrasts with its sensible dependence on nonuniversal features. We show that both nonuniversal amplitudes and universal exponents of leading power law singularities in all large deviation functions are determined by the fact that, due to extensivity, <q:math xmlns:q=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><q:mrow><q:mi>f</q:mi><q:mo stretchy=\"false\">(</q:mo><q:mi>m</q:mi><q:mo stretchy=\"false\">)</q:mo><q:msub><q:mrow><q:mo>∼</q:mo></q:mrow><q:mrow><q:mo stretchy=\"false\">|</q:mo><q:mi>m</q:mi><q:mo stretchy=\"false\">|</q:mo><q:mo>≫</q:mo><q:mn>1</q:mn></q:mrow></q:msub><q:mi>exp</q:mi><q:mo stretchy=\"false\">(</q:mo><q:mo>−</q:mo><q:mi>c</q:mi><q:mo stretchy=\"false\">|</q:mo><q:mi>m</q:mi><q:msup><q:mrow><q:mo stretchy=\"false\">|</q:mo></q:mrow><q:mrow><q:mi>δ</q:mi><q:mo>+</q:mo><q:mn>1</q:mn></q:mrow></q:msup><q:mo stretchy=\"false\">)</q:mo></q:mrow></q:math>, with δ</ab:mi>=</ab:mo>y</ab:mi>H</ab:mi></ab:msub>/</ab:mo>(</ab:mo>d</ab:mi>−</ab:mo>y</ab:mi>H</ab:mi></ab:msub>)</ab:mo></ab:math> and <eb:math xmlns:eb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><eb:mi>c</eb:mi></eb:math> a nonuniversal coefficient. This unexplored scenario implies a universal form of central limit theorem at criticality and is confirmed by exact calculations for mean field Ising models in equilibrium and for anomalous diffusion models, with <gb:math xmlns:gb=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><gb:mi>M</gb:mi></gb:math> replaced by displacement and <ib:math xmlns:ib=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\"><ib:mi>N</ib:mi></ib:math> by time. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-mate","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"36 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143733973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}