{"title":"相对论性磁涡旋物质中的优势轨道极化","authors":"Kenji Fukushima, Koichi Hattori, Kazuya Mameda","doi":"10.1103/physrevlett.135.011601","DOIUrl":null,"url":null,"abstract":"We establish thermodynamic stability and gauge invariance in the magnetovortical matter of Dirac fermions under the coexistent rotation and strong magnetic field. The corresponding partition function reveals that the orbital contribution to bulk thermodynamics preponderates over the conventional contribution from anomaly-related spin effects. This orbital preponderance macroscopically manifests itself in the sign inversion of the induced charge and current in the magnetovortical matter, and can be tested experimentally as the flip of the angular momentum polarization of magnetovortical matter when the magnetic field strength is increased. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>","PeriodicalId":20069,"journal":{"name":"Physical review letters","volume":"33 1","pages":""},"PeriodicalIF":9.0000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Preponderant Orbital Polarization in Relativistic Magnetovortical Matter\",\"authors\":\"Kenji Fukushima, Koichi Hattori, Kazuya Mameda\",\"doi\":\"10.1103/physrevlett.135.011601\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We establish thermodynamic stability and gauge invariance in the magnetovortical matter of Dirac fermions under the coexistent rotation and strong magnetic field. The corresponding partition function reveals that the orbital contribution to bulk thermodynamics preponderates over the conventional contribution from anomaly-related spin effects. This orbital preponderance macroscopically manifests itself in the sign inversion of the induced charge and current in the magnetovortical matter, and can be tested experimentally as the flip of the angular momentum polarization of magnetovortical matter when the magnetic field strength is increased. <jats:supplementary-material> <jats:copyright-statement>Published by the American Physical Society</jats:copyright-statement> <jats:copyright-year>2025</jats:copyright-year> </jats:permissions> </jats:supplementary-material>\",\"PeriodicalId\":20069,\"journal\":{\"name\":\"Physical review letters\",\"volume\":\"33 1\",\"pages\":\"\"},\"PeriodicalIF\":9.0000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physical review letters\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1103/physrevlett.135.011601\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physical review letters","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1103/physrevlett.135.011601","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
Preponderant Orbital Polarization in Relativistic Magnetovortical Matter
We establish thermodynamic stability and gauge invariance in the magnetovortical matter of Dirac fermions under the coexistent rotation and strong magnetic field. The corresponding partition function reveals that the orbital contribution to bulk thermodynamics preponderates over the conventional contribution from anomaly-related spin effects. This orbital preponderance macroscopically manifests itself in the sign inversion of the induced charge and current in the magnetovortical matter, and can be tested experimentally as the flip of the angular momentum polarization of magnetovortical matter when the magnetic field strength is increased. Published by the American Physical Society2025
期刊介绍:
Physical review letters(PRL)covers the full range of applied, fundamental, and interdisciplinary physics research topics:
General physics, including statistical and quantum mechanics and quantum information
Gravitation, astrophysics, and cosmology
Elementary particles and fields
Nuclear physics
Atomic, molecular, and optical physics
Nonlinear dynamics, fluid dynamics, and classical optics
Plasma and beam physics
Condensed matter and materials physics
Polymers, soft matter, biological, climate and interdisciplinary physics, including networks