Pharmacological Reports最新文献

筛选
英文 中文
Acyclic sesquiterpenes nerolidol and farnesol: mechanistic insights into their neuroprotective potential. 无环倍半萜类化合物橙花叔醇和法尼醇:从机理上揭示其神经保护潜力。
IF 3.6 3区 医学
Pharmacological Reports Pub Date : 2025-02-01 Epub Date: 2024-10-22 DOI: 10.1007/s43440-024-00672-8
Anish Singh, Lovedeep Singh
{"title":"Acyclic sesquiterpenes nerolidol and farnesol: mechanistic insights into their neuroprotective potential.","authors":"Anish Singh, Lovedeep Singh","doi":"10.1007/s43440-024-00672-8","DOIUrl":"10.1007/s43440-024-00672-8","url":null,"abstract":"<p><p>Sesquiterpenes are a class of organic compounds found in plants, fungi, and some insects. They are characterized by the presence of three isoprene units, resulting in a molecular formula that typically contains 15 carbon atoms (C₁₅H₂₄). Nerolidol and farnesol are both sesquiterpene alcohols present in the essential oils of numerous plants. They have drawn attention due to their potential neuroprotective properties. Nerolidol and farnesol are structural isomers, specifically geometric isomers, haring the same molecular formula (C₁₅H₂₄O) but differing in the spatial arrangement of their atoms. This variation in structure may contribute to their distinct biological activities. Scientific evidence suggests that nerolidol and farnesol exhibit antioxidant and anti-inflammatory characteristics which are crucial for neuroprotection. Nerolidol has been specifically noted for its ability to alleviate conditions such as Alzheimer's disease, Parkinson's disease, encephalomyelitis, depression, and anxiety by modulating inflammatory and oxidative stress pathways. Moreover, research indicates that both nerolidol and farnesol may modulate the Nrf-2/HO-1 antioxidant signaling pathway to mitigate oxidative stress-induced neurological damage. Activation of Nrf-2/HO-1 signaling cascade promotes cell survival and enhances the brain's ability to resist various insults. Nerolidol has also been reported to alleviate neuroinflammation by inhibiting the TLR-4/NF-κB and COX-2/NF-κB inflammatory signaling pathway. Besides, this nerolidol also modulates BDNF/TrkB/CREB signaling pathway to improve neuronal health. To date, limited research has delved into the anti-inflammatory properties of farnesol concerning neurodegenerative diseases. Further investigation is warranted to comprehensively elucidate the mechanisms underlying its action and potential therapeutic uses in neuroprotection. Initial observations indicate that farnesol exhibits promising prospects as a natural agent for safeguarding brain functions. Henceforth, drawing upon existing literature elucidating the neuroprotective attributes of nerolidol and farnesol, the current review endeavors to provide a detailed analysis of their mechanistic underpinnings in neuroprotection.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":"31-42"},"PeriodicalIF":3.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anticancer potential of osthole: targeting gynecological tumors and breast cancer. 蛇床子的抗癌潜力:针对妇科肿瘤和乳腺癌。
IF 3.6 3区 医学
Pharmacological Reports Pub Date : 2025-02-01 Epub Date: 2024-12-02 DOI: 10.1007/s43440-024-00685-3
Yingqi Han, Zhengao Sun
{"title":"Anticancer potential of osthole: targeting gynecological tumors and breast cancer.","authors":"Yingqi Han, Zhengao Sun","doi":"10.1007/s43440-024-00685-3","DOIUrl":"10.1007/s43440-024-00685-3","url":null,"abstract":"<p><p>Gynecological tumors, such as ovarian, endometrial, and cervical cancers, alongside breast cancer, represent significant malignancies that pose serious threats to women's health worldwide. Standard treatments, including surgery, chemotherapy, radiotherapy, and targeted therapies, are commonly utilized in clinical practice. However, challenges such as high recurrence rates, drug resistance, and adverse side effects underscore the urgent need for more effective therapeutic options. Osthole, a natural coumarin compound derived from Chinese herbal medicine, has demonstrated remarkable antitumor activity against various cancers. Emerging evidence indicates that osthole can inhibit the proliferation, invasion, and metastasis of gynecological and breast cancer cells through various mechanisms, including inducing apoptosis and autophagy, regulating the tumor microenvironment, inhibiting tumor angiogenesis, and enhancing the sensitivity of cancer cells to chemotherapy and radiotherapy. This review highlights the recent advancements in osthole research within the context of gynecological and breast cancers, focusing on its molecular mechanisms, and offers a theoretical foundation for its potential development as an anticancer agent.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":"87-102"},"PeriodicalIF":3.6,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142771293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring melatonin's signalling pathways in the protection against age-related skin deterioration.
IF 3.6 3区 医学
Pharmacological Reports Pub Date : 2025-01-30 DOI: 10.1007/s43440-025-00699-5
Maryam Taheri, Farnoosh Seirafianpour, Amirali Fallahian, Azam Hosseinzadeh, Russel J Reiter, Saeed Mehrzadi
{"title":"Exploring melatonin's signalling pathways in the protection against age-related skin deterioration.","authors":"Maryam Taheri, Farnoosh Seirafianpour, Amirali Fallahian, Azam Hosseinzadeh, Russel J Reiter, Saeed Mehrzadi","doi":"10.1007/s43440-025-00699-5","DOIUrl":"https://doi.org/10.1007/s43440-025-00699-5","url":null,"abstract":"<p><p>Melatonin, renowned for regulating sleep-wake cycles, also exhibits notable anti-aging properties for the skin. Synthesized in the pineal gland and various tissues including the skin, melatonin's efficacy arises from its capacity to combat oxidative stress and shield the skin from ultraviolet (UV)-induced damage. Moreover, it curbs melanin production, thereby potentially ameliorating hyperpigmentation. The presence of melatonin receptors in diverse skin cell types and its documented ability to enhance skin tone, hydration, and texture upon topical administration underscores its promise as an anti-aging agent. Melatonin's protective effects likely emanate from its multifaceted characteristics, encompassing antioxidant, anti-inflammatory, and immunomodulatory functions, as well as its influence on collagen synthesis and mitochondrial activity. Chronic inflammation and oxidative stress initiate a detrimental feedback loop. Reactive oxygen species (ROS), notorious for damaging cellular structures, provoke immune responses by oxidizing vital molecules and activating signaling proteins. This triggers heightened expression of inflammatory genes, perpetuating the cycle. Such dysregulation significantly compromises the body's resilience against infections and other health adversities. This study embarks on an exploration of the fundamental signaling pathways implicated in skin aging. Furthermore, it delves into the therapeutic potential of melatonin and its anti-aging attributes within the realm of skin health.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067278","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Olaparib-induced hyperglycemia in ovarian cancer patients - a case series analysis of a three-month therapy with a consideration of BMI.
IF 3.6 3区 医学
Pharmacological Reports Pub Date : 2025-01-29 DOI: 10.1007/s43440-025-00702-z
Joanna Stanisławiak-Rudowicz, Edyta Szałek, Barbara Więckowska, Edmund Grześkowiak, Radosław Mądry
{"title":"Olaparib-induced hyperglycemia in ovarian cancer patients - a case series analysis of a three-month therapy with a consideration of BMI.","authors":"Joanna Stanisławiak-Rudowicz, Edyta Szałek, Barbara Więckowska, Edmund Grześkowiak, Radosław Mądry","doi":"10.1007/s43440-025-00702-z","DOIUrl":"https://doi.org/10.1007/s43440-025-00702-z","url":null,"abstract":"<p><strong>Background: </strong>Olaparib is a relatively new poly(ADP-ribose) polymerase inhibitor (PARPi) administered to ovarian cancer (OC) patients with a complete or partial response to first-line chemotherapy. One of the metabolic side effects of olaparib is the disruption of glucose homeostasis, often resulting in hyperglycemia The study was a retrospective analysis of olaparib-induced hyperglycemia in OC patients with initial normoglycemia following the first, second, and third month of olaparib treatment METHODS: The study involved 32 OC patients, classified into three groups according to their Body Mass Index (BMI): normal BMI (BMI 18.5-24.9 kg/m<sup>2</sup>; n = 13), overweight (BMI 25-29.9 kg/m<sup>2</sup>; n = 13), and obese (BMI ≥ 30 kg/m<sup>2</sup>; n = 6). The fasting glucose (FG) concentration was evaluated after the first, second, and third cycle of olaparib treatment (a cycle is the equivalent of 28 days of treatment). The severity of the observed hyperglycemia was assessed using the Common Terminology Criteria for Adverse Events (CTCAE v5.0).</p><p><strong>Results: </strong>A significant increase in glycemia was observed after the first and second cycles of olaparib treatment in the group with normal BMI and after the third cycle in overweight and obese patients. There were no significant differences in glucose levels among the groups following the first, the second, and the third cycle. Grade 1 hyperglycemia with impaired fasting glucose levels (5.6-6.9 mmol/l) was found in 15 patients (normal BMI: n = 4, overweight: n = 9, and obesity: n = 2), while glycemia typical of diabetes (≥ 7.0 mmol/l) was observed in one obese patient.</p><p><strong>Conclusions: </strong>Regardless of the weight of OC patients, it is essential to control glycemia during olaparib treatment.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143067283","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Acute anticonvulsant effects of dapsone on PTZ- and MES-induced seizures in mice: NLRP3 inflammasome inhibition and Nrf2/HO-1 pathway preservation.
IF 3.6 3区 医学
Pharmacological Reports Pub Date : 2025-01-27 DOI: 10.1007/s43440-025-00698-6
Ali Lesani, Fatemeh Mashaknejadian Behbahani, Mohammad Amin Manavi, Razieh Mohammad Jafari, Hamed Shafaroodi, Saman Khosravi, Ahmad Reza Dehpour
{"title":"Acute anticonvulsant effects of dapsone on PTZ- and MES-induced seizures in mice: NLRP3 inflammasome inhibition and Nrf2/HO-1 pathway preservation.","authors":"Ali Lesani, Fatemeh Mashaknejadian Behbahani, Mohammad Amin Manavi, Razieh Mohammad Jafari, Hamed Shafaroodi, Saman Khosravi, Ahmad Reza Dehpour","doi":"10.1007/s43440-025-00698-6","DOIUrl":"https://doi.org/10.1007/s43440-025-00698-6","url":null,"abstract":"<p><strong>Background: </strong>Epilepsy, a neurological disorder characterized by recurrent seizures, presents considerable difficulties in treatment, particularly when dealing with drug-resistant cases. Dapsone, recognized for its anti-inflammatory properties, holds promise as a potential therapeutic option. However, its effectiveness in epilepsy requires further investigation. The aim of this study is to explore the effects of dapsone on seizure activity and neuroinflammation, particularly through the nuclear factor erythroid-2-related factor (Nrf2)/ Heme Oxygenase 1 (HO-1) and NOD-like receptor family pyrin domain-containing 3 (NLRP3) pathways, to better understand its therapeutic potential.</p><p><strong>Methods: </strong>To evaluate the effects of dapsone, two seizure models were utilized in mice: pentylenetetrazole (PTZ)-induced clonic seizures and maximal electroshock (MES)-induced generalized tonic-clonic seizures (GTCS) in mice. The impact of dapsone on neuroinflammatory markers and oxidative stress pathways, specifically Nrf2/HO-1 and NLRP3, as well as interleukin-1β (IL-1β), IL-8, and IL-18, was assessed using Western blotting and ELISA techniques.</p><p><strong>Results: </strong>In this study, dapsone (2, 5, 10, and 20 mg/kg, ip) showcased a significant increase in clonic seizure threshold following intravenous infusion of PTZ. Notably, doses of 5, 10, and 20 mg/kg exhibited increased latency and decreased the number of seizures. Additionally, dapsone at 10 and 20 mg/kg prevented the incidence of GTCS and subsequent mortality in the MES model. Furthermore, Dapsone demonstrated modulation of Nrf2/ HO-1 and NLRP3 IL-1 β/IL-18 pathways.</p><p><strong>Conclusion: </strong>This study highlights the therapeutic potential of dapsone in epilepsy, emphasizing the involvement of Nrf2/HO-1 and NLRP3 pathways. These findings provide a foundation for future clinical research aimed at developing dapsone-based therapies for drug-resistant epilepsy.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047438","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Access to high-fat diet results in increased sensitivity to the psychostimulant effects of MDPV in mice.
IF 3.6 3区 医学
Pharmacological Reports Pub Date : 2025-01-27 DOI: 10.1007/s43440-025-00701-0
Jakub Wojcieszak, Katarzyna Kuczyńska, Adrianna Leszczyńska, Eryk Naraziński, Maria Cichalewska-Studzińska
{"title":"Access to high-fat diet results in increased sensitivity to the psychostimulant effects of MDPV in mice.","authors":"Jakub Wojcieszak, Katarzyna Kuczyńska, Adrianna Leszczyńska, Eryk Naraziński, Maria Cichalewska-Studzińska","doi":"10.1007/s43440-025-00701-0","DOIUrl":"10.1007/s43440-025-00701-0","url":null,"abstract":"<p><strong>Background: </strong>The current study investigated the effects of high-fat diet on acute response to 3,4-methylenedioxypyrovalerone (MDPV) in mice. MDPV is a beta-cathinone derivative endowed with psychostimulant activity. Similarly to recreational substances, consumption of palatable food stimulates the mesolimbic dopaminergic system, resulting in neuroadaptive changes.</p><p><strong>Methods: </strong>Adolescent C57BL/6N mice were fed either control diet (CD), 10% of kcal from fat, or high-fat diet (HFD), 60% of kcal from fat. After eight weeks, one group of HFD-fed mice had their diet changed to CD for an additional two weeks. Fasting glucose levels and glucose tolerance were measured to detect impairment in glucose metabolism. Subsequently, the mice were treated with either MDPV (1 mg/kg) or saline, and their locomotor activity was measured. Using reverse transcriptase quantitative polymerase chain reaction (RT-qPCR), the expression of dopamine receptor D1 (Drd1), dopamine receptor D2 (Drd2), and FBJ osteosarcoma oncogene B (FosB) genes was measured in the striatum of mice.</p><p><strong>Results: </strong>Feeding with HFD caused obesity and glucose intolerance in mice. Restriction of fat reduced body mass and reversed impairment of glucose metabolism. HFD-fed mice responded to MDPV with higher potency than CD-fed counterparts, with an increased incidence of stereotypies. A change of diet partially reversed this effect. Downregulation of Drd2 was observed in the mice that switched from HFD to CD, whereas treatment with MDPV caused upregulation of FosB only in the CD-fed mice.</p><p><strong>Conclusions: </strong>Current results suggest that obesity may increase sensitivity to psychostimulant effects of MDPV and elevate the risk of addiction as mice fed with HFD responded to acute treatment with MDPV with higher potency and showed tolerance of FosB induction in response to the drug.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143047437","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paracetamol, its metabolites, and their transfer between maternal circulation and fetal brain in mono- and combination therapies.
IF 3.6 3区 医学
Pharmacological Reports Pub Date : 2025-01-24 DOI: 10.1007/s43440-024-00682-6
Yifan Huang, Fiona Qiu, Katarzyna M Dziegielewska, Mark D Habgood, Norman R Saunders
{"title":"Paracetamol, its metabolites, and their transfer between maternal circulation and fetal brain in mono- and combination therapies.","authors":"Yifan Huang, Fiona Qiu, Katarzyna M Dziegielewska, Mark D Habgood, Norman R Saunders","doi":"10.1007/s43440-024-00682-6","DOIUrl":"https://doi.org/10.1007/s43440-024-00682-6","url":null,"abstract":"<p><strong>Background: </strong>Due to its availability and perceived safety, paracetamol is recommended even during pregnancy and for neonates. It is used frequently alone or in combination with other drugs required for the treatment of various chronic conditions. The aim of this study was to investigate potential effects of drug interactions on paracetamol metabolism and its placental transfer and entry into the developing brain.</p><p><strong>Methods: </strong>Sprague Dawley rats at postnatal day P4, pregnant embryonic day E19 dams, and non-pregnant adult females were administered paracetamol (15 mg/kg) either as monotherapy or in combination with one of seven other drugs: cimetidine, digoxin, fluvoxamine, lamotrigine, lithium, olanzapine, valproate. Concentrations of parent paracetamol and its metabolites (paracetamol-glucuronide, paracetamol-glutathione, and paracetamol-sulfate) in plasma, cerebrospinal fluid (CSF) and brain were measured by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) and their entry into the brain, CSF and transfer across the placenta were estimated.</p><p><strong>Results: </strong>In monotherapy, concentration of parent paracetamol in plasma, CSF, and brain remained similar and at all ages brain entry was unrestricted. In combination therapies, CSF entry of paracetamol increased following co-treatment with olanzapine. Placental transfer of parent paracetamol remained unchanged, however, transfer of paracetamol-sulfate increased with lamotrigine co-administration. Acutely administered paracetamol was more extensively metabolized in adults compared to younger ages resulting in increased concentration of its metabolites with age.</p><p><strong>Conclusions: </strong>Developmental changes in the apparent brain and CSF entry of paracetamol appear to be determined more by its metabolism, rather than by cellular control of its transfer across brain and placental barriers.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143032275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Targeting GABA signaling in type 1 diabetes and its complications- an update on the state of the art. 针对1型糖尿病及其并发症的GABA信号——最新进展
IF 3.6 3区 医学
Pharmacological Reports Pub Date : 2025-01-21 DOI: 10.1007/s43440-025-00697-7
Dariusz Łaszczych, Aleksandra Czernicka, Katarzyna Łaszczych
{"title":"Targeting GABA signaling in type 1 diabetes and its complications- an update on the state of the art.","authors":"Dariusz Łaszczych, Aleksandra Czernicka, Katarzyna Łaszczych","doi":"10.1007/s43440-025-00697-7","DOIUrl":"https://doi.org/10.1007/s43440-025-00697-7","url":null,"abstract":"<p><p>Type 1 diabetes (T1D) is an autoimmune disease that leads to the progressive destruction of insulin-producing β cells, resulting in lifelong insulin dependence and a range of severe complications. Beyond conventional glycemic control, innovative therapeutic strategies are needed to address the underlying disease mechanisms. Recent research has highlighted gamma-aminobutyric acid (GABA) as a promising therapeutic target for T1D due to its dual role in modulating both β cell survival and immune response within pancreatic islets. GABA signaling supports β cell regeneration, inhibits α cell hyperactivity, and promotes α-to-β cell transdifferentiation, contributing to improved islet function. Moreover, GABA's influence extends to mitigating T1D complications, including nephropathy, neuropathy, and retinopathy, as well as regulating central nervous system pathways involved in glucose metabolism. This review consolidates the latest advances in GABA-related T1D therapies, covering animal preclinical and human clinical studies and examining the therapeutic potential of GABA receptor modulation, combination therapies, and dietary interventions. Emphasis is placed on the translational potential of GABA-based approaches to enhance β cell viability and counteract autoimmune processes in T1D. Our findings underscore the therapeutic promise of GABA signaling modulation as a novel approach for T1D treatment and encourage further investigation into this pathway's role in comprehensive diabetes management.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tacrolimus and diabetic rodent models. 他克莫司与糖尿病啮齿动物模型。
IF 3.6 3区 医学
Pharmacological Reports Pub Date : 2025-01-21 DOI: 10.1007/s43440-024-00693-3
Minyan Qian, Mengmeng Guan, Liying Wang, Nan Hu
{"title":"Tacrolimus and diabetic rodent models.","authors":"Minyan Qian, Mengmeng Guan, Liying Wang, Nan Hu","doi":"10.1007/s43440-024-00693-3","DOIUrl":"https://doi.org/10.1007/s43440-024-00693-3","url":null,"abstract":"<p><p>Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects. In addition, TAC can induce cost-effective, non-obese animal models of diabetes, where the metabolic parameter changes closely resemble those observed during the onset and progression of type 2 diabetes (T2DM), post-transplantation diabetes mellitus (PTDM), and associated complications. This review, based on articles indexed in PubMed up to August 19, 2024, identified 48 studies focusing on TAC-induced diabetic rodent models and 22 studies exploring the effects of TAC on diabetic or obese rodent models. These studies were systematically summarized based on TAC dosage, route of administration, duration of administration, and glucose metabolism indices used for evaluation. Additionally, the impact of TAC dose reduction or discontinuation on glucose metabolism was assessed, along with pharmacological agents that modulate TAC-induced diabetes, including anti-diabetic medications, anti-inflammatory and antioxidant compounds, biologics, and antibiotics. Key signaling pathways implicated in TAC-induced diabetes include CaN/NFAT, PI3K/AKT/mTOR, and TGF-β/Smad, all of which impair islet β-cell function, thereby contributing to diabetes development. This review provides a concise summary of the characteristics of relevant murine models, offering valuable guidance for selecting appropriate and economical animal models for future research.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases. 白藜芦醇对心血管疾病中一氧化氮信号的调节作用。
IF 3.6 3区 医学
Pharmacological Reports Pub Date : 2025-01-20 DOI: 10.1007/s43440-025-00694-w
Sajad Abolfazli, Sercan Karav, Thomas P Johnston, Amirhossein Sahebkar
{"title":"Regulatory effects of resveratrol on nitric oxide signaling in cardiovascular diseases.","authors":"Sajad Abolfazli, Sercan Karav, Thomas P Johnston, Amirhossein Sahebkar","doi":"10.1007/s43440-025-00694-w","DOIUrl":"https://doi.org/10.1007/s43440-025-00694-w","url":null,"abstract":"<p><p>Cardiovascular illnesses are multifactorial disorders and represent the primary reasons for death worldwide, according to the World Health Organization. As a signaling molecule, nitric oxide (NO) is extremely permeable across cellular membranes owing to its unique molecular features, like its small molecular size, lipophilicity, and free radical properties. Some of the biological effects of NO are vasodilation, inhibition in the growth of vascular smooth muscle cells, and functional regulation of cardiac cells. Several therapeutic approaches have been tested to increase the production of NO or some downstream NO signaling pathways. The health benefits of red wine are typically attributed to the polyphenolic phytoalexin, resveratrol (3,5,4'-trihydroxy-trans-stilbene), which is found in several plant species. Resveratrol has beneficial cardiovascular properties, some of which are mediated through endothelial nitric oxide synthase production (eNOS). Resveratrol promotes NO generation from eNOS through various methods, including upregulation of eNOS expression, activation in the enzymatic activity of eNOS, and reversal of eNOS uncoupling. Additionally, by reducing of oxidative stress, resveratrol inhibits the formation of superoxide and inactivation NO, increasing NO bioavailability. This review discusses the scientific literature on resveratrol's beneficial impact on NO signaling and how this effect improves the function of vascular endothelium.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143009871","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信