{"title":"Effects of curcumin on vascular smooth muscle cells: implications for health and disease.","authors":"Majid Shohrati, Farshad Abedi, Mahdi Bagheri, Amirhossein Sahebkar","doi":"10.1007/s43440-025-00744-3","DOIUrl":null,"url":null,"abstract":"<p><p>Vascular smooth muscle cells (SMCs) are pivotal in regulating vascular tone and integrity. Their dysregulation significantly contributes to the pathophysiology of cardiovascular ailments, including atherosclerosis, blood pressure, and vascular remodeling. Curcumin, a polyphenol with a natural origin in turmeric, exhibits promising therapeutic properties due to its remarkable anti-inflammatory, antioxidant, and antiproliferative characteristics. This review aims to assess the effects of curcumin on vascular SMC behavior, encompassing its impact on proliferation, migration, phenotypic switching, and extracellular matrix remodeling. The underlying molecular mechanisms are highlighted, particularly curcumin's modulation of signaling pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and nuclear transcription factor E2-related factor-2 (Nrf2) signaling pathways, as well as its ability to decrease oxidative stress and inflammatory cytokine generation. Furthermore, we evaluate the implications of the results for vascular health and disease, emphasizing curcumin's potential to prevent or mitigate atherosclerosis, restenosis, and hypertension. Despite promising preclinical evidence, challenges related to curcumin's bioavailability and clinical translation remain.</p>","PeriodicalId":19947,"journal":{"name":"Pharmacological Reports","volume":" ","pages":""},"PeriodicalIF":3.6000,"publicationDate":"2025-06-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmacological Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s43440-025-00744-3","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0
Abstract
Vascular smooth muscle cells (SMCs) are pivotal in regulating vascular tone and integrity. Their dysregulation significantly contributes to the pathophysiology of cardiovascular ailments, including atherosclerosis, blood pressure, and vascular remodeling. Curcumin, a polyphenol with a natural origin in turmeric, exhibits promising therapeutic properties due to its remarkable anti-inflammatory, antioxidant, and antiproliferative characteristics. This review aims to assess the effects of curcumin on vascular SMC behavior, encompassing its impact on proliferation, migration, phenotypic switching, and extracellular matrix remodeling. The underlying molecular mechanisms are highlighted, particularly curcumin's modulation of signaling pathways such as nuclear factor-kappa B (NF-κB), mitogen-activated protein kinase (MAPK), and nuclear transcription factor E2-related factor-2 (Nrf2) signaling pathways, as well as its ability to decrease oxidative stress and inflammatory cytokine generation. Furthermore, we evaluate the implications of the results for vascular health and disease, emphasizing curcumin's potential to prevent or mitigate atherosclerosis, restenosis, and hypertension. Despite promising preclinical evidence, challenges related to curcumin's bioavailability and clinical translation remain.
期刊介绍:
Pharmacological Reports publishes articles concerning all aspects of pharmacology, dealing with the action of drugs at a cellular and molecular level, and papers on the relationship between molecular structure and biological activity as well as reports on compounds with well-defined chemical structures.
Pharmacological Reports is an open forum to disseminate recent developments in: pharmacology, behavioural brain research, evidence-based complementary biochemical pharmacology, medicinal chemistry and biochemistry, drug discovery, neuro-psychopharmacology and biological psychiatry, neuroscience and neuropharmacology, cellular and molecular neuroscience, molecular biology, cell biology, toxicology.
Studies of plant extracts are not suitable for Pharmacological Reports.