Particle and Fibre Toxicology最新文献

筛选
英文 中文
Towards a risk assessment framework for micro- and nanoplastic particles for human health.
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-11-29 DOI: 10.1186/s12989-024-00602-9
Amelie Vogel, Jutta Tentschert, Raymond Pieters, Francesca Bennet, Hubert Dirven, Annemijne van den Berg, Esther Lenssen, Maartje Rietdijk, Dirk Broßell, Andrea Haase
{"title":"Towards a risk assessment framework for micro- and nanoplastic particles for human health.","authors":"Amelie Vogel, Jutta Tentschert, Raymond Pieters, Francesca Bennet, Hubert Dirven, Annemijne van den Berg, Esther Lenssen, Maartje Rietdijk, Dirk Broßell, Andrea Haase","doi":"10.1186/s12989-024-00602-9","DOIUrl":"https://doi.org/10.1186/s12989-024-00602-9","url":null,"abstract":"<p><strong>Background: </strong>Human exposure to micro- and nanoplastic particles (MNPs) is inevitable but human health risk assessment remains challenging for several reasons. MNPs are complex mixtures of particles derived from different polymer types, which may contain plenty of additives and/or contaminants. MNPs cover broad size distributions and often have irregular shapes and morphologies. Moreover, several of their properties change over time due to aging/ weathering. Case-by-case assessment of each MNP type does not seem feasible, more straightforward methodologies are needed. However, conceptual approaches for human health risk assessment are rare, reliable methods for exposure and hazard assessment are largely missing, and meaningful data is scarce.</p><p><strong>Methods: </strong>Here we reviewed the state-of-the-art concerning risk assessment of chemicals with a specific focus on polymers as well as on (nano-)particles and fibres. For this purpose, we broadly screened relevant knowledge including guidance documents, standards, scientific publications, publicly available reports. We identified several suitable concepts such as: (i) polymers of low concern (PLC), (ii) poorly soluble low toxicity particles (PSLT) and (iii) fibre pathogenicity paradigm (FPP). We also aimed to identify promising methods, which may serve as a reasonable starting point for a test strategy.</p><p><strong>Results and conclusion: </strong>Here, we propose a state-of-the-art modular risk assessment framework for MNPs, focusing primarily on inhalation as a key exposure route for humans that combines several integrated approaches to testing and assessment (IATAs). The framework starts with basic physicochemical characterisation (step 1), followed by assessing the potential for inhalative exposure (step 2) and includes several modules for toxicological assessment (step 3). We provide guidance on how to apply the framework and suggest suitable methods for characterization of physicochemical properties, exposure and hazard assessment. We put special emphasis on new approach methodologies (NAMs) and included grouping, where adequate. The framework has been improved in several iterative cycles by taking into account expert feedback and is currently being tested in several case studies. Overall, it can be regarded as an important step forward to tackle human health risk assessment.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"48"},"PeriodicalIF":7.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation. 更正:通过膦酸盐表面钝化降低金属氧化物纳米粒子的肺毒性。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-11-22 DOI: 10.1186/s12989-024-00609-2
Xiaoming Cai, Anson Lee, Zhaoxia Ji, Cynthia Huang, Chong Hyun Chang, Xiang Wang, Yu-Pei Liao, Tian Xia, Ruibin Li
{"title":"Correction: Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphonate-based surface passivation.","authors":"Xiaoming Cai, Anson Lee, Zhaoxia Ji, Cynthia Huang, Chong Hyun Chang, Xiang Wang, Yu-Pei Liao, Tian Xia, Ruibin Li","doi":"10.1186/s12989-024-00609-2","DOIUrl":"10.1186/s12989-024-00609-2","url":null,"abstract":"","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"47"},"PeriodicalIF":7.2,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11585158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142692747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Copper oxide nanoparticles exacerbate chronic obstructive pulmonary disease by activating the TXNIP-NLRP3 signaling pathway. 纳米氧化铜颗粒通过激活 TXNIP-NLRP3 信号通路加剧慢性阻塞性肺病。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-11-11 DOI: 10.1186/s12989-024-00608-3
Woong-Il Kim, So-Won Pak, Se-Jin Lee, Sin-Hyang Park, Je-Oh Lim, Dong-Il Kim, In-Sik Shin, Sung-Hwan Kim, Jong-Choon Kim
{"title":"Copper oxide nanoparticles exacerbate chronic obstructive pulmonary disease by activating the TXNIP-NLRP3 signaling pathway.","authors":"Woong-Il Kim, So-Won Pak, Se-Jin Lee, Sin-Hyang Park, Je-Oh Lim, Dong-Il Kim, In-Sik Shin, Sung-Hwan Kim, Jong-Choon Kim","doi":"10.1186/s12989-024-00608-3","DOIUrl":"10.1186/s12989-024-00608-3","url":null,"abstract":"<p><strong>Background: </strong>Although copper oxide nanoparticles (CuONPs) offer certain benefits to humans, they can be toxic to organs and exacerbate underlying diseases upon exposure. Chronic obstructive pulmonary disease (COPD), induced by smoking, can worsen with exposure to various harmful particles. However, the specific impact of CuONPs on COPD and the underlying mechanisms remain unknown. In this study, we investigated the toxic effects of CuONPs on the respiratory tract, the pathophysiology of CuONPs exposure-induced COPD, and the mechanism of CuONPs toxicity, focusing on thioredoxin-interacting protein (TXNIP) signaling using a cigarette smoke condensate (CSC)-induced COPD model.</p><p><strong>Results: </strong>In the toxicity study, CuONPs exposure induced an inflammatory response in the respiratory tract, including inflammatory cell infiltration, cytokine production, and mucus secretion, which were accompanied by increased TXNIP, NOD-like receptor protein 3 (NLRP3), caspase-1, and interleukin (IL)-1β. In the COPD model, CuONPs exposure induced the elevation of various indexes related to COPD, as well as increased TXNIP expression. Additionally, TNXIP-knockout (KO) mice showed a significantly decreased expression of NLRP3, caspase-1, and IL-1β and inflammatory responses in CuONPs-exposed COPD mice. These results were consistent with the results of an in vitro experiment using H292 cells. By contrast, TNXIP-overexpressed mice had a markedly increased expression of NLRP3, caspase-1, and IL-1β and inflammatory responses in CuONPs-exposed COPD mice.</p><p><strong>Conclusions: </strong>We elucidated the exacerbating effect of CuONPs exposure on the respiratory tract with underlying COPD, as well as related signaling transduction via TXNIP regulation. CuONPs exposure significantly increased inflammatory responses in the respiratory tract, which was correlated with elevated TXNIP-NLRP3 signaling.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"46"},"PeriodicalIF":7.2,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11552314/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142625265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell-nanoparticle stickiness and dose delivery in a multi-model in silico platform: DosiGUI. 多模型硅学平台中的细胞-纳米粒子粘性和剂量递送:DosiGUI。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-10-24 DOI: 10.1186/s12989-024-00607-4
Ermes Botte, Pietro Vagaggini, Ilaria Zanoni, Nicole Guazzelli, Lara Faccani, Davide Gardini, Anna L Costa, Arti Ahluwalia
{"title":"Cell-nanoparticle stickiness and dose delivery in a multi-model in silico platform: DosiGUI.","authors":"Ermes Botte, Pietro Vagaggini, Ilaria Zanoni, Nicole Guazzelli, Lara Faccani, Davide Gardini, Anna L Costa, Arti Ahluwalia","doi":"10.1186/s12989-024-00607-4","DOIUrl":"10.1186/s12989-024-00607-4","url":null,"abstract":"<p><strong>Background: </strong>It is well-known that nanoparticles sediment, diffuse and aggregate when dispersed in a fluid. Once they approach a cell monolayer, depending on the affinity or \"stickiness\" between cells and nanoparticles, they may adsorb instantaneously, settle slowly - in a time- and concentration-dependent manner - or even encounter steric hindrance and rebound. Therefore, the dose perceived by cells in culture may not necessarily be that initially administered. Methods for quantifying delivered dose are difficult to implement, as they require precise characterization of nanoparticles and exposure scenarios, as well as complex mathematical operations to handle the equations governing the system dynamics. Here we present a pipeline and a graphical user interface, DosiGUI, for application to the accurate nano-dosimetry of engineered nanoparticles on cell monolayers, which also includes methods for determining the parameters characterising nanoparticle-cell stickiness.</p><p><strong>Results: </strong>We evaluated the stickiness for 3 industrial nanoparticles (TiO<sub>2</sub> - NM-105, CeO<sub>2</sub> - NM-212 and BaSO<sub>4</sub> - NM-220) administered to 3 cell lines (HepG2, A549 and Caco-2) and subsequently estimated corresponding delivered doses. Our results confirm that stickiness is a function of both nanoparticle and cell type, with the stickiest combination being BaSO<sub>4</sub> and Caco-2 cells. The results also underline that accurate estimations of the delivered dose cannot prescind from a rigorous evaluation of the affinity between the cell type and nanoparticle under investigation.</p><p><strong>Conclusion: </strong>Accurate nanoparticle dose estimation in vitro is crucial for in vivo extrapolation, allowing for their safe use in medical and other applications. This study provides a computational platform - DosiGUI - for more reliable dose-response characterization. It also highlights the importance of cell-nanoparticle stickiness for better risk assessment of engineered nanomaterials.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"45"},"PeriodicalIF":7.2,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515606/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke. 受控人体接触:柴油废气和木烟对健康影响的回顾与比较。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-10-23 DOI: 10.1186/s12989-024-00603-8
Erin Long, Christopher F Rider, Christopher Carlsten
{"title":"Controlled human exposures: a review and comparison of the health effects of diesel exhaust and wood smoke.","authors":"Erin Long, Christopher F Rider, Christopher Carlsten","doi":"10.1186/s12989-024-00603-8","DOIUrl":"10.1186/s12989-024-00603-8","url":null,"abstract":"<p><p>One of the most pressing issues in global health is air pollution. Emissions from traffic-related air pollution and biomass burning are two of the most common sources of air pollution. Diesel exhaust (DE) and wood smoke (WS) have been used as models of these pollutant sources in controlled human exposure (CHE) experiments. The aim of this review was to compare the health effects of DE and WS using results obtained from CHE studies. A total of 119 CHE-DE publications and 25 CHE-WS publications were identified for review. CHE studies of DE generally involved shorter exposure durations and lower particulate matter concentrations, and demonstrated more potent dysfunctional outcomes than CHE studies of WS. In the airways, DE induces neutrophilic inflammation and increases airway hyperresponsiveness, but the effects of WS are unclear. There is strong evidence that DE provokes systemic oxidative stress and inflammation, but less evidence exists for WS. Exposure to DE was more prothrombotic than WS. DE generally increased cardiovascular dysfunction, but limited evidence is available for WS. Substantial heterogeneity in experimental methodology limited the comparison between studies. In many areas, outcomes of WS exposures tended to trend in similar directions to those of DE, suggesting that the effects of DE exposure may be useful for inferring possible responses to WS. However, several gaps in the literature were identified, predominantly pertaining to elucidating the effects of WS exposure. Future studies should strongly consider performing head-to-head comparisons between DE and WS using a CHE design to determine the differential effects of these exposures.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"44"},"PeriodicalIF":7.2,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11515699/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142505531","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Current understanding of the impact of United States military airborne hazards and burn pit exposures on respiratory health. 目前对美军空气传播危害和烧伤坑暴露对呼吸系统健康影响的了解。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-10-21 DOI: 10.1186/s12989-024-00606-5
Janeen H Trembley, Paul Barach, Julie M Tomáška, Jedidah T Poole, Pamela K Ginex, Robert F Miller, Jacob B Lindheimer, Anthony M Szema, Kimberly Gandy, Trishul Siddharthan, Jason P Kirkness, Joshua P Nixon, Rosie Lopez Torres, Mark A Klein, Timothy R Nurkiewicz, Tammy A Butterick
{"title":"Current understanding of the impact of United States military airborne hazards and burn pit exposures on respiratory health.","authors":"Janeen H Trembley, Paul Barach, Julie M Tomáška, Jedidah T Poole, Pamela K Ginex, Robert F Miller, Jacob B Lindheimer, Anthony M Szema, Kimberly Gandy, Trishul Siddharthan, Jason P Kirkness, Joshua P Nixon, Rosie Lopez Torres, Mark A Klein, Timothy R Nurkiewicz, Tammy A Butterick","doi":"10.1186/s12989-024-00606-5","DOIUrl":"10.1186/s12989-024-00606-5","url":null,"abstract":"<p><p>Millions of United States (U.S.) troops deployed to the Middle East and Southwest Asia were exposed to toxic airborne hazards and/or open-air burn pits. Burn pit emissions contain particulate matter combined with toxic gasses and heavy metals. Ongoing research has demonstrated that exposures to the airborne hazards from military burn pits have profound and lasting health and wellness consequences. Research on the long-term health consequences of exposure to open burn pits has been limited. Work continues to understand the scope of the health impacts and the underlying pathobiology following exposures and to establish care standards. The U.S. Sergeant First Class Heath Robinson Honoring our Promise to Address Comprehensive Toxics (PACT) Act was signed into law August 2022. This act expands the benefits and services to U.S. Veterans exposed to toxicants, requires the Veterans Health Administration to provide toxic exposure screening, and supports increased research, education, and treatment due to toxic occupational exposures. This review highlights the state of the science related to military burn pit exposures research with an emphasis on pulmonary health. Clinical data demonstrate areas of reduced or delayed pulmonary ventilation and lung pathologies such as small airways scarring, diffuse collagen deposition and focal areas of ossification. Identification and characterization of foreign matter deposition in lung tissues are reported, including particulate matter, silica, titanium oxides, and polycyclic aromatic hydrocarbons. These data are consistent with toxic exposures and with the symptoms reported by post-deployment Veterans despite near-normal non-invasive pulmonary evaluations. On-going work toward new methods for non-invasive pulmonary diagnoses and disease monitoring are described. We propose various studies and databases as resources for clinical and health outcomes research. Pre-clinical research using different burn pit modeling approaches are summarized, including oropharyngeal aspiration, intranasal inhalation, and whole-body exposure chamber inhalation. These studies focus on the impacts of specific toxic substances as well as the effects of short-term and sustained insults over time on the pulmonary systems.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"43"},"PeriodicalIF":7.2,"publicationDate":"2024-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11492460/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142472100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of simulated smoke condensate generated from combustion of selected military burn pit contents on human airway epithelial cells. 特定军用燃烧坑燃烧产生的模拟烟雾冷凝物对人体气道上皮细胞的影响。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-10-08 DOI: 10.1186/s12989-024-00604-7
Arunava Ghosh, Keith L Rogers, Samuel C Gallant, Yong Ho Kim, Julia E Rager, M Ian Gilmour, Scott H Randell, Ilona Jaspers
{"title":"Effects of simulated smoke condensate generated from combustion of selected military burn pit contents on human airway epithelial cells.","authors":"Arunava Ghosh, Keith L Rogers, Samuel C Gallant, Yong Ho Kim, Julia E Rager, M Ian Gilmour, Scott H Randell, Ilona Jaspers","doi":"10.1186/s12989-024-00604-7","DOIUrl":"10.1186/s12989-024-00604-7","url":null,"abstract":"<p><strong>Background: </strong>Exposure to military burn pit smoke during deployment is associated with different respiratory and non-respiratory diseases. However, information linking smoke exposure to human pulmonary health is lacking. This study examined the effects of simulated burn pit smoke condensates on human airway epithelial cells (HAECs) from twelve donors (smokers/non-smokers, biological female/male) cultured at an air-liquid interface and exposed to condensates from three simulated burn pit waste materials (cardboard, plywood, and plastic) incinerated at two combustion conditions: smoldering and flaming. Cellular gene expression was analyzed using bulk RNA sequencing, and basolateral media cytokine levels were assessed using multiplex immunoassay.</p><p><strong>Results: </strong>Flaming smoke condensates caused more significant differentially expressed genes (DEGs) with plywood flaming smoke being the most potent in altering gene expression and modulating cytokine release. Cardboard and plywood flaming condensates primarily activated detoxification pathways, whereas plastic flaming affected genes related to anti-microbial and inflammatory responses. Correlation analysis between smoke condensate chemicals and gene expression to understand the underlying mechanism revealed crucial role of oxygenated polycyclic aromatic hydrocarbons (PAHs) and aluminum, molybdenum, and silicon elements; IL6 expression was positively correlated with most PAHs. Stratification of data based on HAEC donor demographics suggests that these affect gene expression changes. Enrichment analysis indicated similarity with several deployment-related presumptive and reported diseases, including asthma, emphysema, and cancer of different organs.</p><p><strong>Conclusions: </strong>This study highlights that simulated burn pit smoke exposure of HAECs causes gene expression changes indicative of deployment-related diseases with more pronounced effects seen in smokers and females. Future studies are needed to further characterize how sex and smoking status affect deployment-related diseases.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"41"},"PeriodicalIF":7.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460082/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A pilot study of the cardiopulmonary effects in healthy volunteers after exposure to high levels of PM2.5 in a New York City subway station. 一项关于健康志愿者暴露于纽约市地铁站高浓度 PM2.5 后心肺功能影响的试点研究。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-10-08 DOI: 10.1186/s12989-024-00594-6
David G Luglio, Kayla Rae Farrell, Terry Gordon
{"title":"A pilot study of the cardiopulmonary effects in healthy volunteers after exposure to high levels of PM<sub>2.5</sub> in a New York City subway station.","authors":"David G Luglio, Kayla Rae Farrell, Terry Gordon","doi":"10.1186/s12989-024-00594-6","DOIUrl":"10.1186/s12989-024-00594-6","url":null,"abstract":"<p><strong>Background: </strong>Subway systems are becoming increasingly common worldwide transporting large populations in major cities. PM<sub>2.5</sub> concentrations have been demonstrated to be exceptionally high when underground, however. Studies on the impact of subway PM exposure on cardiopulmonary health in the United States are limited.</p><p><strong>Methods: </strong>Healthy volunteers in New York City were exposed to a 2-h visit on the 9th Street Station platform on the Port Authority Trans-Hudson train system. Blood pressure, heart rate variability (HRV), spirometry, and forced impulse oscillometry were measured, and urine, blood spot, and nasal swab biosamples were collected for cytokine analysis at the end of the 2-h exposure period. These endpoints were compared against individual control measurements collected after 2-h in a \"clean\" control space. In addition to paired comparisons, mixed effects models with subject as a random effect were employed to investigate the effect of the PM<sub>2.5</sub> concentrations and visit type (i.e., subway vs. control).</p><p><strong>Results: </strong>Mean PM<sub>2.5</sub> concentrations on the platform and during the control visit were 293.6 ± 65.7 (SD) and 4.6 ± 1.9 µg/m<sup>3</sup>, respectively. There was no change in any of the health metrics, but there was a non-significant trend for SDNN to be lower after subway exposure compared to control exposure. Total symptomatic scores did increase post-subway exposure compared to reported values prior to exposure or after the control visit. No significant changes in cytokine concentrations in any specimen type were observed. Mixed-effects models mostly corroborated these paired comparisons.</p><p><strong>Conclusions: </strong>Acute exposures to PM on a subway platform do not cause measurable cardiopulmonary effects apart from reductions in HRV and increases in symptoms in healthy volunteers. These findings match other studies that found little to no changes in lung function and blood pressure after exposure in underground subway stations. Future work should still target potentially more vulnerable populations, such as individuals with asthma or those who spend increased time underground on the subway such as transit workers.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"42"},"PeriodicalIF":7.2,"publicationDate":"2024-10-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11460011/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diesel exhaust particle inhalation in conjunction with high-fat diet consumption alters the expression of pulmonary SARS-COV-2 infection pathways, which is mitigated by probiotic treatment in C57BL/6 male mice. C57BL/6雄性小鼠在吸入柴油废气颗粒和摄入高脂肪饮食的同时改变了肺部SARS-COV-2感染途径的表达,而益生菌治疗可减轻这种改变。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-09-29 DOI: 10.1186/s12989-024-00601-w
Kayla Nguyen-Alley, Sarah Daniel, Danielle T Phillippi, Tyler D Armstrong, Bailee Johnson, Winston Ihemeremadu, Amie K Lund
{"title":"Diesel exhaust particle inhalation in conjunction with high-fat diet consumption alters the expression of pulmonary SARS-COV-2 infection pathways, which is mitigated by probiotic treatment in C57BL/6 male mice.","authors":"Kayla Nguyen-Alley, Sarah Daniel, Danielle T Phillippi, Tyler D Armstrong, Bailee Johnson, Winston Ihemeremadu, Amie K Lund","doi":"10.1186/s12989-024-00601-w","DOIUrl":"https://doi.org/10.1186/s12989-024-00601-w","url":null,"abstract":"<p><strong>Background: </strong>Both exposure to air pollutants and obesity are associated with increased incidence and severity of COVID-19 infection; however, the mechanistic pathways involved are not well-characterized. After being primed by the transmembrane protease serine 2 (TMPRSS2) or furin protease, SARS-CoV-2 uses the angiotensin-converting enzyme (ACE)-2 receptor to enter respiratory epithelial cells. The androgen receptor (AR) is known to regulate both TMPRSS2 and ACE2 expression, and neuropilin-1 (NRP1) is a proposed coreceptor for SARS-CoV-2; thus, altered expression of these factors may promote susceptibility to infection. As such, this study investigated the hypothesis that inhalational exposure to traffic-generated particulate matter (diesel exhaust particulate; DEP) increases the expression of those pathways that mediate SARS-CoV-2 infection and susceptibility, which is exacerbated by the consumption of a high-fat (HF) diet.</p><p><strong>Methods: </strong>Four- to six-week-old male C57BL/6 mice fed either regular chow or a HF diet (HF, 45% kcal from fat) were randomly assigned to be exposed via oropharyngeal aspiration to 35 µg DEP suspended in 35 µl 0.9% sterile saline or sterile saline only (control) twice a week for 30 days. Furthermore, as previous studies have shown that probiotic treatment can protect against exposure-related inflammatory outcomes in the lungs, a subset of study animals fed a HF diet were concurrently treated with 0.3 g/day Winclove Ecologic<sup>®</sup> Barrier probiotics in their drinking water throughout the study.</p><p><strong>Results: </strong>Our results revealed that the expression of ACE2 protein increased with DEP exposure and that TMPRSS2, AR, NRP1, and furin protein expression increased with DEP exposure in conjunction with a HF diet. These DEP ± HF diet-mediated increases in expression were mitigated with probiotic treatment.</p><p><strong>Conclusion: </strong>These findings suggest that inhalational exposure to air pollutants in conjunction with the consumption of a HF diet contributes to a more susceptible lung environment to SARS-CoV-2 infection and that probiotic treatment could be beneficial as a preventative measure.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"40"},"PeriodicalIF":7.2,"publicationDate":"2024-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11439268/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Addressing the relevance of polystyrene nano- and microplastic particles used to support exposure, toxicity and risk assessment: implications and recommendations. 解决用于支持暴露、毒性和风险评估的聚苯乙烯纳米和微塑料颗粒的相关性:影响和建议。
IF 7.2 1区 医学
Particle and Fibre Toxicology Pub Date : 2024-09-27 DOI: 10.1186/s12989-024-00599-1
Todd Gouin, Robert Ellis-Hutchings, Mark Pemberton, Bianca Wilhelmus
{"title":"Addressing the relevance of polystyrene nano- and microplastic particles used to support exposure, toxicity and risk assessment: implications and recommendations.","authors":"Todd Gouin, Robert Ellis-Hutchings, Mark Pemberton, Bianca Wilhelmus","doi":"10.1186/s12989-024-00599-1","DOIUrl":"https://doi.org/10.1186/s12989-024-00599-1","url":null,"abstract":"&lt;p&gt;&lt;strong&gt;Background: &lt;/strong&gt;There has been an exponential increase in the number of studies reporting on the toxicological effects associated with exposure to nano and microplastic particles (NMPs). The majority of these studies, however, have used monodispersed polystyrene microspheres (PSMs) as 'model' particles. Here we review the differences between the manufacture and resulting physicochemical properties of polystyrene used in commerce and the PSMs most commonly used in toxicity studies.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Main body: &lt;/strong&gt;In general, we demonstrate that significant complexity exists as to the properties of polystyrene particles. Differences in chemical composition, size, shape, surface functionalities and other aspects raise doubt as to whether PSMs are fit-for-purpose for the study of potential adverse effects of naturally occurring NMPs. A realistic assessment of potential health implications of the exposure to environmental NMPs requires better characterisation of the particles, a robust mechanistic understanding of their interactions and effects in biological systems as well as standardised protocols to generate relevant model particles. It is proposed that multidisciplinary engagement is necessary for the development of a timely and effective strategy towards this end. We suggest a holistic framework, which must be supported by a multidisciplinary group of experts to work towards either providing access to a suite of environmentally relevant NMPs and/or developing guidance with respect to best practices that can be adopted by research groups to generate and reliably use NMPs. It is emphasized that there is a need for this group to agree to a consensus regarding what might best represent a model NMP that is consistent with environmental exposure for human health, and which can be used to support a variety of ongoing research needs, including those associated with exposure and hazard assessment, mechanistic toxicity studies, toxicokinetics and guidance regarding the prioritization of plastic and NMPs that likely represent the greatest risk to human health. It is important to acknowledge, however, that establishing a multidisciplinary group, or an expert community of practice, represents a non-trivial recommendation, and will require significant resources in terms of expertise and funding.&lt;/p&gt;&lt;p&gt;&lt;strong&gt;Conclusion: &lt;/strong&gt;There is currently an opportunity to bring together a multidisciplinary group of experts, including polymer chemists, material scientists, mechanical engineers, exposure and life-cycle assessment scientists, toxicologists, microbiologists and analytical chemists, to provide leadership and guidance regarding a consensus on defining what best represents environmentally relevant NMPs. We suggest that given the various complex issues surrounding the environmental and human health implications that exposure to NMPs represents, that a multidisciplinary group of experts are thus critical towards helping to progress the harm","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"21 1","pages":"39"},"PeriodicalIF":7.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11429038/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142351662","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信