{"title":"在发育阶段暴露于环境空气污染通过微生物群-肠-脑轴诱导小鼠后代神经发育损伤。","authors":"Zijun Yang, Yi Zhang, Shanshan Ran, Jingyi Zhang, Yonggui Gao, Yali Zhang, Xinyue Li, Baozhuo Ai, Shengtao Wei, Fei Tian, Guang Jia, Hualiang Lin, Zhangjian Chen, Zilong Zhang","doi":"10.1186/s12989-025-00637-6","DOIUrl":null,"url":null,"abstract":"<p><p>Exposure to air pollution has been increasingly recognized as a risk factor for neurodevelopmental disorders, and gut microbiome may play a critical role. However, current evidence still remains scarce. In the present study, mice were exposed to real-time ambient air pollution from conception through young adulthood, with neurobehavioral performance and gut microbiome being assessed across different developmental stages. Neurodevelopmental changes including emotional and cognitive impairments were observed in behavioral tests, accompanied by pathological and inflammation changes in brain, which were more pronounced in adolescence than in young adulthood. Alterations in the compositions and functions of gut microbiome were also revealed by fecal metagenomic sequencing. Mediation analysis showed that gut microbiome alterations significantly contributed to the observed neurodevelopmental changes induced by air pollution. Furthermore, after antibiotic (ABX) intervention, the observed neurobehavioral, pathological and inflammatory differences between the exposed and control groups diminished. These findings indicate that the gut microbiome mediates the neurodevelopmental damage caused by exposure to air pollution during developmental stages, adding novel insights on the underlying mechanisms linking air pollution and neurodevelopmental disorders.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"22 1","pages":"20"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257794/pdf/","citationCount":"0","resultStr":"{\"title\":\"Exposure to ambient air pollution over developmental stages induced neurodevelopmental impairment in mice offspring via microbiome-gut-brain axis.\",\"authors\":\"Zijun Yang, Yi Zhang, Shanshan Ran, Jingyi Zhang, Yonggui Gao, Yali Zhang, Xinyue Li, Baozhuo Ai, Shengtao Wei, Fei Tian, Guang Jia, Hualiang Lin, Zhangjian Chen, Zilong Zhang\",\"doi\":\"10.1186/s12989-025-00637-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Exposure to air pollution has been increasingly recognized as a risk factor for neurodevelopmental disorders, and gut microbiome may play a critical role. However, current evidence still remains scarce. In the present study, mice were exposed to real-time ambient air pollution from conception through young adulthood, with neurobehavioral performance and gut microbiome being assessed across different developmental stages. Neurodevelopmental changes including emotional and cognitive impairments were observed in behavioral tests, accompanied by pathological and inflammation changes in brain, which were more pronounced in adolescence than in young adulthood. Alterations in the compositions and functions of gut microbiome were also revealed by fecal metagenomic sequencing. Mediation analysis showed that gut microbiome alterations significantly contributed to the observed neurodevelopmental changes induced by air pollution. Furthermore, after antibiotic (ABX) intervention, the observed neurobehavioral, pathological and inflammatory differences between the exposed and control groups diminished. These findings indicate that the gut microbiome mediates the neurodevelopmental damage caused by exposure to air pollution during developmental stages, adding novel insights on the underlying mechanisms linking air pollution and neurodevelopmental disorders.</p>\",\"PeriodicalId\":19847,\"journal\":{\"name\":\"Particle and Fibre Toxicology\",\"volume\":\"22 1\",\"pages\":\"20\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12257794/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle and Fibre Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12989-025-00637-6\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-025-00637-6","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Exposure to ambient air pollution over developmental stages induced neurodevelopmental impairment in mice offspring via microbiome-gut-brain axis.
Exposure to air pollution has been increasingly recognized as a risk factor for neurodevelopmental disorders, and gut microbiome may play a critical role. However, current evidence still remains scarce. In the present study, mice were exposed to real-time ambient air pollution from conception through young adulthood, with neurobehavioral performance and gut microbiome being assessed across different developmental stages. Neurodevelopmental changes including emotional and cognitive impairments were observed in behavioral tests, accompanied by pathological and inflammation changes in brain, which were more pronounced in adolescence than in young adulthood. Alterations in the compositions and functions of gut microbiome were also revealed by fecal metagenomic sequencing. Mediation analysis showed that gut microbiome alterations significantly contributed to the observed neurodevelopmental changes induced by air pollution. Furthermore, after antibiotic (ABX) intervention, the observed neurobehavioral, pathological and inflammatory differences between the exposed and control groups diminished. These findings indicate that the gut microbiome mediates the neurodevelopmental damage caused by exposure to air pollution during developmental stages, adding novel insights on the underlying mechanisms linking air pollution and neurodevelopmental disorders.
期刊介绍:
Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.