{"title":"地铁空气颗粒对健康成人的影响:中国城市随机对照试验","authors":"Yuan Sun, Yuting Xiang, Yuwei Chen, Dan Xu, Tianyun Wang, Fanmei Zeng, Yu Bao, Luwei Zhao, Yifei Li, Qing Xia, Ye Deng, Jiamei Chen, Yuting Wang, Wen Peng, Guanhua Pang, Miao He","doi":"10.1186/s12989-025-00638-5","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Subway systems reduce traffic congestion, air pollution, and carbon dioxide emissions in cities but the impacts of subway air pollution on the health of subway users remain obscure. We conducted a randomized controlled trial involving 83 healthy adults, with 80 included in the final analysis, randomly grouped to spend 2 h daily for 5 consecutive days either in an office or on a subway platform. The fine (PM<sub>2.5</sub>) and thoracic (PM<sub>10</sub>) particles concentrations, temperature, and humidity were monitored. Measurements of health parameters were assessed, including lung function and levels of fractional exhaled nitric oxide (FeNO), inflammatory and oxidative stress biomarkers, and metabolites in serum.</p><p><strong>Results: </strong>The subway platform exhibited significantly high pollutant levels, with mean PM<sub>2.5</sub> and PM<sub>10</sub> concentrations of 193.4 ± 39.4 µg/m<sup>3</sup> and 311.5 ± 64.3 µg/m<sup>3</sup> respectively. After the 5-day subway exposure, significant declines were observed in lung-function index values, including forced expiratory volume in the first second (FEV1)/forced vital capacity (FVC), maximal voluntary ventilation (MVV) and peak expiratory flow rate (PEFR) as well as serum levels of glutathione peroxidase (GPX)-1 (p < 0.05). Conversely, somatosensory symptom scores, FeNO levels, and serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-8 were strongly elevated (p < 0.05). Results indicated increased arsenic and cobalt and decreased selenium in urine after the subway exposure (p < 0.05). Finally, the subway exposure was associated with disruptions in seven metabolic pathways and nine metabolites, particularly the depletion of L-cysteine, pretyrosine and O-acetyl-L-serine.</p><p><strong>Conclusions: </strong>This study provides the first evidence that repeated exposure to subway airborne particles is associated with reduced lung function and increased respiratory and systemic inflammation in healthy adults. Our results underscore the need to develop strategies to mitigate exposure risks, ultimately protecting public health in urban environments.</p>","PeriodicalId":19847,"journal":{"name":"Particle and Fibre Toxicology","volume":"22 1","pages":"18"},"PeriodicalIF":8.2000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235793/pdf/","citationCount":"0","resultStr":"{\"title\":\"Impacts of subway air particles on healthy adults: a randomized controlled trial in a Chinese city.\",\"authors\":\"Yuan Sun, Yuting Xiang, Yuwei Chen, Dan Xu, Tianyun Wang, Fanmei Zeng, Yu Bao, Luwei Zhao, Yifei Li, Qing Xia, Ye Deng, Jiamei Chen, Yuting Wang, Wen Peng, Guanhua Pang, Miao He\",\"doi\":\"10.1186/s12989-025-00638-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Subway systems reduce traffic congestion, air pollution, and carbon dioxide emissions in cities but the impacts of subway air pollution on the health of subway users remain obscure. We conducted a randomized controlled trial involving 83 healthy adults, with 80 included in the final analysis, randomly grouped to spend 2 h daily for 5 consecutive days either in an office or on a subway platform. The fine (PM<sub>2.5</sub>) and thoracic (PM<sub>10</sub>) particles concentrations, temperature, and humidity were monitored. Measurements of health parameters were assessed, including lung function and levels of fractional exhaled nitric oxide (FeNO), inflammatory and oxidative stress biomarkers, and metabolites in serum.</p><p><strong>Results: </strong>The subway platform exhibited significantly high pollutant levels, with mean PM<sub>2.5</sub> and PM<sub>10</sub> concentrations of 193.4 ± 39.4 µg/m<sup>3</sup> and 311.5 ± 64.3 µg/m<sup>3</sup> respectively. After the 5-day subway exposure, significant declines were observed in lung-function index values, including forced expiratory volume in the first second (FEV1)/forced vital capacity (FVC), maximal voluntary ventilation (MVV) and peak expiratory flow rate (PEFR) as well as serum levels of glutathione peroxidase (GPX)-1 (p < 0.05). Conversely, somatosensory symptom scores, FeNO levels, and serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-8 were strongly elevated (p < 0.05). Results indicated increased arsenic and cobalt and decreased selenium in urine after the subway exposure (p < 0.05). Finally, the subway exposure was associated with disruptions in seven metabolic pathways and nine metabolites, particularly the depletion of L-cysteine, pretyrosine and O-acetyl-L-serine.</p><p><strong>Conclusions: </strong>This study provides the first evidence that repeated exposure to subway airborne particles is associated with reduced lung function and increased respiratory and systemic inflammation in healthy adults. Our results underscore the need to develop strategies to mitigate exposure risks, ultimately protecting public health in urban environments.</p>\",\"PeriodicalId\":19847,\"journal\":{\"name\":\"Particle and Fibre Toxicology\",\"volume\":\"22 1\",\"pages\":\"18\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12235793/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Particle and Fibre Toxicology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s12989-025-00638-5\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"TOXICOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Particle and Fibre Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12989-025-00638-5","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"TOXICOLOGY","Score":null,"Total":0}
Impacts of subway air particles on healthy adults: a randomized controlled trial in a Chinese city.
Background: Subway systems reduce traffic congestion, air pollution, and carbon dioxide emissions in cities but the impacts of subway air pollution on the health of subway users remain obscure. We conducted a randomized controlled trial involving 83 healthy adults, with 80 included in the final analysis, randomly grouped to spend 2 h daily for 5 consecutive days either in an office or on a subway platform. The fine (PM2.5) and thoracic (PM10) particles concentrations, temperature, and humidity were monitored. Measurements of health parameters were assessed, including lung function and levels of fractional exhaled nitric oxide (FeNO), inflammatory and oxidative stress biomarkers, and metabolites in serum.
Results: The subway platform exhibited significantly high pollutant levels, with mean PM2.5 and PM10 concentrations of 193.4 ± 39.4 µg/m3 and 311.5 ± 64.3 µg/m3 respectively. After the 5-day subway exposure, significant declines were observed in lung-function index values, including forced expiratory volume in the first second (FEV1)/forced vital capacity (FVC), maximal voluntary ventilation (MVV) and peak expiratory flow rate (PEFR) as well as serum levels of glutathione peroxidase (GPX)-1 (p < 0.05). Conversely, somatosensory symptom scores, FeNO levels, and serum levels of tumor necrosis factor (TNF)-α and interleukin (IL)-8 were strongly elevated (p < 0.05). Results indicated increased arsenic and cobalt and decreased selenium in urine after the subway exposure (p < 0.05). Finally, the subway exposure was associated with disruptions in seven metabolic pathways and nine metabolites, particularly the depletion of L-cysteine, pretyrosine and O-acetyl-L-serine.
Conclusions: This study provides the first evidence that repeated exposure to subway airborne particles is associated with reduced lung function and increased respiratory and systemic inflammation in healthy adults. Our results underscore the need to develop strategies to mitigate exposure risks, ultimately protecting public health in urban environments.
期刊介绍:
Particle and Fibre Toxicology is an online journal that is open access and peer-reviewed. It covers a range of disciplines such as material science, biomaterials, and nanomedicine, focusing on the toxicological effects of particles and fibres. The journal serves as a platform for scientific debate and communication among toxicologists and scientists from different fields who work with particle and fibre materials. The main objective of the journal is to deepen our understanding of the physico-chemical properties of particles, their potential for human exposure, and the resulting biological effects. It also addresses regulatory issues related to particle exposure in workplaces and the general environment. Moreover, the journal recognizes that there are various situations where particles can pose a toxicological threat, such as the use of old materials in new applications or the introduction of new materials altogether. By encompassing all these disciplines, Particle and Fibre Toxicology provides a comprehensive source for research in this field.