Tian-Ning Yang , Ning-Ning Huang , Yu-Xiang Wang , Ping-An Jian , Xiang-Yu Ma , Xue-Nan Li , Jin-Long Li
{"title":"Melatonin protects spermatogenic cells against DNA damage and necroptosis induced by atrazine","authors":"Tian-Ning Yang , Ning-Ning Huang , Yu-Xiang Wang , Ping-An Jian , Xiang-Yu Ma , Xue-Nan Li , Jin-Long Li","doi":"10.1016/j.pestbp.2024.106209","DOIUrl":"10.1016/j.pestbp.2024.106209","url":null,"abstract":"<div><div>Atrazine (ATZ), a widely used triazine herbicide, has been shown to disrupt reproductive development in organisms. Melatonin (MLT) is a natural hormone and has been shown to have strong antioxidant properties. Due to its lipophilicity, it can cross biological barriers freely and act on germ cells directly. However, the mechanism through which melatonin affects atrazine-induced damage to male sperm cells remains unclear. This study aimed to investigate the effects of ATZ on spermatocyte development and to elucidate MLT's role in preventing ATZ-induced spermatogenesis failure. Pubertal mice were randomly divided into four groups: blank control group (Con), 5 mg/kg melatonin group (MLT), 170 mg/kg atrazine group (ATZ), and ATZ + MLT group. GC-1 cell culture was employed to access the in vitro effects of MLT and ATZ on spermatogonia. The results indicate that atrazine affected protein and metabolite composition, and reduced sperm viability, sperm motility (VAP, VSL and VCL) and levels of proteins related to spermatogenesis function in the mice testis. Melatonin alleviated the development of cellular DNA damage and necroptosis caused by atrazine both in vivo and in vitro. Moreover, we proposed that it was GC-1 cells developing necroptosis, but not other cell types in the testis. In conclusion, this study suggests that atrazine disrupts the development process, causing DNA damage in spermatozoa during spermatogenesis. Additionally, ATZ-induced necroptosis specifically targets spermatogenic cells. Notably, melatonin alleviates atrazine-induced necroptosis and DNA damage in spermatogenic cells. This study provides new insights into potential therapeutic strategies for atrazine-induced male infertility.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106209"},"PeriodicalIF":4.2,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nan Zhang , Guangjie Han , Chuanming Li , Lixin Huang , Qin Liu , Manman Lin , Bin Xu , Jian Xu
{"title":"Cnaphalocrocis medinalis granulovirus regulates apoptosis by targeting AIF1 and ASPP1 through tca-miR-3885-5p and tca-miR-3897-3p to promote infection","authors":"Nan Zhang , Guangjie Han , Chuanming Li , Lixin Huang , Qin Liu , Manman Lin , Bin Xu , Jian Xu","doi":"10.1016/j.pestbp.2024.106196","DOIUrl":"10.1016/j.pestbp.2024.106196","url":null,"abstract":"<div><div><em>Cnaphalocrocis medinalis</em> granulovirus (CnmeGV) is a potential biocontrol agent for <em>C. medinalis</em> which is a major rice pest. However, its insecticidal efficacy is slow due to cell apoptosis. This study investigated the role of miRNAs in CnmeGV-mediated apoptosis. Small RNA sequencing and qRT-PCR identified miRNAs tca-miR-3885-5p and tca-miR-3897-3p, which initially increased and then decreased post-infection, but remained higher than controls. This trend was opposite to the changes in midgut apoptosis levels detected using terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and DNA ladder assays. Compared to the group treated with CnmeGV alone, agomirs increased the CnmeGV-induced larval mortality, reduced midgut apoptosis, whereas antagomirs had the opposite effects. We found that the upregulation of CnmeGV replication induced by agomirs initially increased and then decreased, while the apoptosis inducer PAC-1 compensated for the weakening trend of CnmeGV replication upregulation induced by agomirs in the later stages of infection. Results indicated the virus hijacks these miRNAs to inhibit early apoptosis, later requiring apoptosis for systemic infection from the midgut. Agomirs treatment and dual-luciferase assays showed these miRNAs functioned via <em>apoptosis-inducing factor 1</em> (<em>AIF1</em>) and <em>apoptosis</em>-<em>stimulating protein of p53 1</em> (<em>ASPP1</em>) mRNA expression. This study highlights the role of these miRNAs in infection and provides insights for developing viral insecticide enhancers.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106196"},"PeriodicalIF":4.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jingting Wang, Tianye Hu, Xu He, Zhen Zhang, Na Yu, Zewen Liu
{"title":"Omeprazole and its analogs exhibit insecticidal potencies as inhibitors of insect choline acetyltransferase","authors":"Jingting Wang, Tianye Hu, Xu He, Zhen Zhang, Na Yu, Zewen Liu","doi":"10.1016/j.pestbp.2024.106207","DOIUrl":"10.1016/j.pestbp.2024.106207","url":null,"abstract":"<div><div>Choline acetyltransferase (ChAT) is crucial for acetylcholine synthesis and regulates diverse functions in numerous biological processes. Omeprazole, an inhibitor on human ChAT, was evaluated here on insect ChAT as a potential inhibitor, as well as its insecticidal potency on <em>Nilaparvata lugens</em>, a major insect pest on rice. The evaluation also included omeprazole analogs and α-NETA, in order to explore a superior leading compound targeting on insect ChAT. In toxicity test, α-NETA and omeprazole exhibited insecticidal activity, among which omeprazole exhibited activity with a mortality of around 50 % on <em>N. lugens</em> nymphs at 0.4 mg/mL. <em>In vitro</em> crude enzyme assays showed that omeprazole acted as an inhibitor on insect ChAT with a high selectivity and exciting potency compared with α-NETA and control. Three residues (Tyr84, Val95, Tyr589) was critical in <em>N. lugens</em> ChAT for interacting with its substrate choline through molecular docking, and it also revealed that omeprazole exhibited a higher binding affinity toward ChAT catalytic tunnel compared with α-NETA. Based on this, we screened omeprazole analogs for their affinity to <em>N. lugens</em> ChAT, and two compounds stood out. The 5-hydroxy omeprazole had the highest binding affinity by prediction, and 5-<em>O</em>-desmethyl omeprazole was with the lowest binding affinity. The toxicity bioassay and enzyme activity test were then performed on these two compounds. Aligned with the docking results, 5-hydroxy omeprazole showed a strong inhibitory effect and insecticidal activity. In summary, omeprazole and 5-hydroxy omeprazole could serve as lead compounds for insecticides targeting on insect ChAT, a novel target.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106207"},"PeriodicalIF":4.2,"publicationDate":"2024-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655836","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Caroline Fouet , Matthew J. Pinch , Fred A. Ashu , Marilene M. Ambadiang , Calmes Bouaka , Anthoni J. Batronie , Cesar A. Hernandez , Desiree E. Rios , Véronique Penlap-Beng , Colince Kamdem
{"title":"Field-evolved resistance to neonicotinoids in the mosquito, Anopheles gambiae, is associated with mutations of nicotinic acetylcholine receptor subunits combined with cytochrome P450-mediated detoxification","authors":"Caroline Fouet , Matthew J. Pinch , Fred A. Ashu , Marilene M. Ambadiang , Calmes Bouaka , Anthoni J. Batronie , Cesar A. Hernandez , Desiree E. Rios , Véronique Penlap-Beng , Colince Kamdem","doi":"10.1016/j.pestbp.2024.106205","DOIUrl":"10.1016/j.pestbp.2024.106205","url":null,"abstract":"<div><div>New insecticides prequalified for malaria control interventions include modulators of nicotinic acetylcholine receptors that act selectively on different subunits leading to variable sensitivity among arthropods. This study aimed to investigate the molecular mechanisms underlying contrasting susceptibility to neonicotinoids observed in wild populations of two mosquito sibling species. Bioassays and a synergist test with piperonyl butoxide revealed that the sister taxa, <em>Anopheles gambiae</em> and <em>An. coluzzii</em>, from Yaounde, Cameroon, both have the potential to develop resistance to acetamiprid through cytochrome P450-mediated detoxification. However, contrary to <em>An. coluzzii</em>, <em>An. gambiae</em> populations are evolving cross-resistance to several active ingredients facilitated by mutations of nicotinic acetylcholine receptors (nAChRs). We sequenced coding regions on the β1 and α6 nAChR subunits where variants associated with resistance to neonicotinoids or to spinosyns have been found in agricultural pests and detected no mutation in <em>An. coluzzii</em>. By contrast, six nucleotide substitutions including an amino acid change in one of the loops that modulate ligand binding and affect sensitivity were present in the resistant species, <em>An. gambiae</em>. Allele frequency distributions were consistent with the spread of beneficial mutations that likely reduce the affinity of <em>An. gambiae</em> nAChRs for synthetic modulators. Our findings provide critical information for the application and resistance management of nAChR modulators in malaria prevention.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106205"},"PeriodicalIF":4.2,"publicationDate":"2024-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655837","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hao Wu , Sheng-nan Li , Rui-quan Hou , Peng-rui Du , Kun-yu Zhao , Muhammad Zeeshan , Han-hong Xu , Zhi-xiang Zhang , Pei-wen Zhang
{"title":"Mechanisms of selectivity for azadirachtin in honeybees (Apis cerana): A new strategy for avoiding thiamethoxam ingestion","authors":"Hao Wu , Sheng-nan Li , Rui-quan Hou , Peng-rui Du , Kun-yu Zhao , Muhammad Zeeshan , Han-hong Xu , Zhi-xiang Zhang , Pei-wen Zhang","doi":"10.1016/j.pestbp.2024.106208","DOIUrl":"10.1016/j.pestbp.2024.106208","url":null,"abstract":"<div><div>The high toxicity of thiamethoxam (Thi) to foragers has threatened the development of bee populations and the use of neonicotinoid pesticides. In this study, we explored the mechanism of selective feeding on azadirachtin (Aza) by foragers to reduce the feeding of Aza-Thi and improve foragers' safety. The results showed that foragers under selective feeding significantly reduced the Aza sucrose solution intake. The Thi content in foragers was significantly lower, and the mortality rate was significantly reduced. In order to further analyze the selective feeding of foragers on Aza, the classic proboscis extension response (PER) experiment showed that Aza did not affect the learning ability of foragers, and the expression of related genes was not significantly different from the regular PER foragers. Further analysis of transcriptomics and metabolomics showed that compared with the regular PER foragers, treated with Aza were significantly affected in metabolic pathways and peroxisome and 67 differentially expressed genes (DEGs) were up-regulated and 136 were down-regulated. Differential metabolite analysis showed that metabolites primarily enriched in caffeine metabolism and microbial metabolism in diverse environments, and only dibucaine was up-regulated in response to Aza treatment. It is worth noting that dibucaine was significantly positively correlated with differentially expressed genes. Thus, our findings revealed that Aza does not affect the expression of memory genes in foragers. Aza affected the regular metabolic levels of foragers, leading to selective feeding of foragers on Aza, reduced intake of Aza-Thi, and increased safety for foragers. This study provides a reference for applying Aza to selective mechanisms in foragers.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106208"},"PeriodicalIF":4.2,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High resistance levels to pyrimethanil and fludioxonil among fourteen Penicillium spp. from pome fruits in the U.S. Pacific Northwest","authors":"Madan Pandey , Achour Amiri","doi":"10.1016/j.pestbp.2024.106206","DOIUrl":"10.1016/j.pestbp.2024.106206","url":null,"abstract":"<div><div>In this study, 162 <em>Penicillium</em> isolates, i.e., 31 <em>P. expansum</em> isolates and 131 isolates from 13 other <em>Penicillium</em> spp. referred to as “non-expansum” were collected from apples and pears from multiple packinghouses in Washington State and Oregon. The sensitivity of the isolates to the postharvest fungicides pyrimethanil (PYR) and fludioxonil (FDL) was assessed in vitro. The mean EC<sub>50</sub> value for PYR was 0.75 μg/mL in <em>P. expansum</em> compared to 1.63, 3.47, 6.95, 7.06 and 32.21 μg/mL in <em>P. solitum</em>, <em>P. palitans</em>, <em>P. commune</em>, <em>P. roqueforti</em> and <em>P. carneum</em>, respectively. For FDL, the mean EC<sub>50</sub> value was 0.04 μg/mL in <em>P. expansum</em> compared to >0.80, 1.00, 10.40, 13.99, and 158.10 μg/mL in <em>P. commune</em>, P<em>. palitans</em>, <em>P. roqueforti</em>, <em>P. solitum</em>, and <em>P. paneum</em>, respectively. Overall, > 40 % of isolates from five “non-expansum” species showed dual resistance to PYR and FDL versus 9.6 % in <em>P. expansum</em>. The recommended rates of PYR and FDL failed to control isolates of six <em>Penicillium</em> spp. on detached apples after five months at 1.5 °C. Sequencing of the Mdl1, NikA, and Os1 genes from different isolates of eight species revealed a high polymorphism in the Mdl1 and NikA of several “non-expansum” species. Three and two concurrent mutations, in addition to a G409R and S959, were detected in the Mdl1 and NikA, respectively, that potentially confer resistance to PYR and FDL. The high level of resistance and the control failure observed on fruits highlight the potential risk posed by several “non-expansum” <em>Penicillium</em> species to pome fruit packers.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106206"},"PeriodicalIF":4.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655872","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Factors influencing pesticide-biocontrol agent compatibility: A metadata-based review","authors":"Ewumi Azeez Folorunso , Andrea Bohata , Jan Mraz","doi":"10.1016/j.pestbp.2024.106204","DOIUrl":"10.1016/j.pestbp.2024.106204","url":null,"abstract":"<div><div>The complexities of non-target effects of registered pesticides on biocontrol agents (BCAs) hinder the optimization of integrated pest management programs in agriculture. The wealth of literature on BCA-pesticide compatibility allows for the investigation of factors influencing BCA susceptibility and the generalized impacts of different pesticides. We conducted a meta-analysis using 2088 observations from 122 published articles to assess non-target effects on two phytoseiid species (<em>Neoseiulus californicus</em> and <em>Phytoseiulus persimilis</em>), a parasitoid (<em>Encarsia formosa</em>), and two microbial BCAs (<em>Trichoderma harzianum</em> and <em>Metarhizium anisopliae</em>). We explored the contributions of bioassay factors (exposure duration, temperature, test methods, mode of actions (MOA), and type of pesticide), and simulated effects of compatibility on target pests. MOA groups 21 and 6 were the most harmful to predatory mites and <em>E. formosa</em>, increasing mortality during pesticide-BCA compatibility. Exposure duration, temperature, and test methods were identified as the most influential factors increasing mortality in phytoseiids during pesticide exposure. Insecticides and fungicides were the most represented and harmful groups to BCAs. Although most bioassays were conducted at room temperature, temperatures between 21 and 22 °C were the most harmful to phytoseiids and <em>E. formosa</em> during toxicity assays. Exposure durations of 1–3 days (54–85 %) for predators/parasitoids and 1–5 days (>50 %) for microbial BCAs highlight the lack of data on long-term impacts. In assessing pesticide impacts on target pests, pesticides with compatible concentrations above mean LC50 values were more effective. This study not only identified compatibility trends but also highlighted factors responsible for discrepancies in results and knowledge gaps that need to be addressed.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106204"},"PeriodicalIF":4.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142593904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Xu Zhifeng , Feng Guo , Zhang Chenghao , Xia Wei , Li Maoyan , Qian Kun , Zhang Yongqiang
{"title":"Enhanced mite control and agricultural safety with etoxazole-loaded chitin nanocrystals: Synthesis, characterization, and ecological impacts","authors":"Xu Zhifeng , Feng Guo , Zhang Chenghao , Xia Wei , Li Maoyan , Qian Kun , Zhang Yongqiang","doi":"10.1016/j.pestbp.2024.106197","DOIUrl":"10.1016/j.pestbp.2024.106197","url":null,"abstract":"<div><div>Chitin nanocrystals (ChNCs), known for their high aspect ratio, surface charge, and mobility, are promising bio-based nanomaterials for drug delivery. However, their potential as pesticide carriers in agriculture remains underexplored. Etoxazole, a diphenyl oxalate acaricide, effectively inhibits egg hatching and the normal molting process in mites but suffers from rapid degradation and short persistence in field applications. This study introduces a novel formulation, Eto@ChNC, prepared by complexing TEMPO-oxidized ChNCs with etoxazole via a one-pot method. Eto@ChNC was evaluated for controlling <em>Tetranychus urticae</em>, demonstrating significantly enhanced rapid action and prolonged efficacy compared to traditional formulations. The formulation increased the synergistic effects on mite eggs and deutonymphs by 41.74 % and 67.85 %, respectively, extending effectiveness by two days. The improved performance was attributed to the enhanced wetting ability of Eto@ChNC on leaf surfaces and its superior inhibition of the epidermal chitin content in <em>T. urticae</em>, facilitating greater etoxazole penetration. Transcriptome sequencing revealed numerous differentially expressed genes related to chitin metabolism, elucidating the molecular mechanisms underlying the increased efficacy. Safety assessments confirmed that Eto@ChNC did not elevate toxicity to earthworms or predatory mites and promoted the growth of wheat and cowpea, underscoring its environmental safety. These findings highlight Eto@ChNC as a significant advancement in bio-based acaricide formulations, offering promising applications in mite management.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106197"},"PeriodicalIF":4.2,"publicationDate":"2024-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655873","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zheng Sun , Chao Li , Tianhua Chai , Zhipeng Yao , Jing Zhang , Qifeng Wu , Zhiqing Ma
{"title":"Uptake, translocation and metabolism of N-phenyl-phthalamic acid in pepper and wheat","authors":"Zheng Sun , Chao Li , Tianhua Chai , Zhipeng Yao , Jing Zhang , Qifeng Wu , Zhiqing Ma","doi":"10.1016/j.pestbp.2024.106203","DOIUrl":"10.1016/j.pestbp.2024.106203","url":null,"abstract":"<div><div><em>N</em>-phenyl-phthalamic acid (PPA) is a new type of plant growth regulator that is widely utilized on fruit trees and crops in China. Understanding the physical and chemical behavior of PPA in plants is crucial for formulating application strategies and predicting potential environmental risks. This study investigated the uptake, translocation, and metabolism processes of PPA in pepper and wheat after different treatments. The roots of pepper and wheat can rapidly absorb and translocate PPA to the stems and leaves. In the 100 μg/mL treatment group, the PPA concentrations in the roots, stems, and leaves of pepper reached their maximum within 10 h after treatment, with 19.8, 2.4, and 2.9 mg/kg, respectively. Similar results can be detected in wheat. PPA can also be translocated from treated leaves to the entire plant in both pepper and wheat, and it tends to accumulate more in the upper leaves, with PPA mass percentages of 36.4 % and 36.9 % in the upper leaves of wheat and pepper, respectively, at 96 h. PPA is easily degradable in the plant body and seeds (the t<sub>1/2</sub> was 1.3–3.3 d). The above results indicate that PPA is easily absorbed by the roots, leaves, and seeds of crops and, undergoes bidirectional translocation, and is easily degradable, which means that PPA can be applied in various ways and poses a relatively low risk to food safety.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106203"},"PeriodicalIF":4.2,"publicationDate":"2024-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zhangyi Ju , Yanju Bi , Meichen Gao , Yilin Yin , Tong Xu , Shiwen Xu
{"title":"Emamectin benzoate and nanoplastics induce PANoptosis of common carp (Cyprinus carpio) gill through MAPK pathway","authors":"Zhangyi Ju , Yanju Bi , Meichen Gao , Yilin Yin , Tong Xu , Shiwen Xu","doi":"10.1016/j.pestbp.2024.106202","DOIUrl":"10.1016/j.pestbp.2024.106202","url":null,"abstract":"<div><div>Emamectin benzoate (EMB) is a pesticide that is frequently used. Nanoplastics (NPs) are a recently identified class of pollutants that are ubiquitous in the environment. In the aquatic environment, NPs can appear together with EMB, which may exacerbates the damage to water and aquatic organisms. However, the damage and mechanism of EMB and NPs to the gill tissue of common carp (<em>Cyprinus carpio</em>) remain unclear. Therefore, an EMB or/NPs exposure model was constructed to explore the mechanism of EMB or/NPs exposure on carp gill damage. This study was done by immunofluorescence, RT-qPCR, Western blot and other methods. Both <em>in vitro and in vivo</em> data indicated that EMB or NPs exposure could lead to gill tissue destruction, oxidative stress with the increased of ROS fluorescence intensity, MDA and H<sub>2</sub>O<sub>2</sub> content, and the decreased CAT and GSH-PX activity, and the activation of MAPK pathway. Subsequently, PANoptosomes were activated with the up-regulated mRNA and protein expression of RIPK-1, Caspase-1,NLRP3, ACS, RIPK-3, Caspase-8, resulting in PANoptosis including the increased GSDMD, Caspase-3, MLKL expression. Notably, the results following combined exposure were more pronounced than those observed following exposure alone. The addition of <em>N</em>-acetylcysteine (NAC) and 3-methylindole (3-MI) further evidenced that EMB or/and NPs exposure can induce gill damage <em>via</em> the ROS/MAPK/PANoptosis pathway. Therefore, the present study reveals that EMB or/NPs exposure induces PANoptosis in carp gill by activating ROS/p38/MAPK signaling.</div></div>","PeriodicalId":19828,"journal":{"name":"Pesticide Biochemistry and Physiology","volume":"206 ","pages":"Article 106202"},"PeriodicalIF":4.2,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142655875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}