Patty's Toxicology最新文献

筛选
英文 中文
Manganese and Rhenium 锰和铼
Patty's Toxicology Pub Date : 2001-04-16 DOI: 10.1002/0471435139.TOX039
J. M. Davis
{"title":"Manganese and Rhenium","authors":"J. M. Davis","doi":"10.1002/0471435139.TOX039","DOIUrl":"https://doi.org/10.1002/0471435139.TOX039","url":null,"abstract":"Manganese (Mn, atomic number 25) and rhenium (Re, atomic number 75) are group 7 (VIIB) transition elements. Before the discovery and confirmation of the existence of rhenium predicted by Mendeleev's periodic law, rhenium was provisionally termed dvi-manganese because of its expected resemblance to manganese. Manganese and rhenium share many of the general chemical characteristics of metals in the transition series, including multiple valency, the ability to form stable complex ions, paramagnetism, and catalytic properties. However, the second and third elements in the transition series generally have chemical properties more similar to each other than to the first member. Thus, in many respects, rhenium is chemically more similar to technetium than to manganese. \u0000 \u0000 \u0000 \u0000Inhalation of particulate Mn constitutes the dominant route through which toxicity is expressed under most occupational conditions. Manganese is notably toxic to the central nervous system (CNS) and also has effects on the respiratory system and on reproductive function. Numerous clinical cases of frank Mn toxicity denote a characteristic syndrome that may include psychiatric symptoms, dystonia and rigidity, impaired manual dexterity, and gait disturbances. Several epidemiological studies provide a coherent pattern of evidence of neurotoxicity from occupational exposure to Mn at average concentrations around 1 mg/m3 or lower. The primary effects observed in such workers pertain to motor function, especially hand steadiness, eye–hand coordination, and rapid coordinated movements, which imply involvement of the CNS extrapyramidal system. Although a growing body of literature is devoted to medical applications of the radioactive isotopes 186Re and 188Re, very limited information is available on the toxicity of rhenium itself, which makes it difficult to characterize its toxicity with confidence. The few studies conducted thus far suggest that acute administrations of Re may have relatively low toxicity, at least by noninhalation routes. It has been described as “relatively inert” in the body and produces transient changes in blood pressure (both hypo- and hypertensive), tachycardia, sedation, and ataxia. In one comparative study, the lethal oral dose of Re was about eight times higher than that of molybdenum. However, one report suggests that it could be more potent as an inhalation toxicant. If true, rhenium and manganese might share the feature of having much greater toxicity by inhalation than by ingestion. \u0000 \u0000 \u0000Keywords: \u0000 \u0000Manganese; \u0000Manganese compounds; \u0000Rhenium; \u0000Rhenium compounds; \u0000Nonhuman primates; \u0000Clinical cases; \u0000Edipemiology; \u0000Occupational exposure limits","PeriodicalId":19820,"journal":{"name":"Patty's Toxicology","volume":"22 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2001-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"72963420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Electric and Magnetic Fields and Occupational Health 电磁场与职业健康
Patty's Toxicology Pub Date : 2001-04-16 DOI: 10.1002/0471435139.TOX100
L. Kheifets
{"title":"Electric and Magnetic Fields and Occupational Health","authors":"L. Kheifets","doi":"10.1002/0471435139.TOX100","DOIUrl":"https://doi.org/10.1002/0471435139.TOX100","url":null,"abstract":"Electric and magnetic fields (EMF) are ubiquitous. The earth has static electric fields, which produce lightning during thunderstorms, and geomagnetic fields created by electric currents within its core. Electric and magnetic fields are also produced during electric power generation, transmission, and use. \u0000 \u0000 \u0000 \u0000Electric power has generally been considered safe during the more than 100 years of its use, although shocks and burns from direct contact with electrical conductors are a recognized health hazard. Of the approximately 1100 deaths from electric shock that occur each year in the United States, about three-fourths result from unsafe operation of household appliances; accidents in the workplace account for the rest. The possible health consequences of electric and magnetic field exposure are a much more recent concern. \u0000 \u0000 \u0000 \u0000Power-frequency EMF exposure—unavoidable since the use of electricity has spread throughout the world—has been under investigation since the early 1970s. Investigations have included epidemiologic as well as in vitro and in vivo laboratory studies encompassing a wide range of diseases. The literature on EMF and health is vast, comprising over 1000 published studies, and has been reviewed in depth by several authoritative committees. Of note are reviews by the National Research Council of the National Academy of Sciences (NAS), the National Institute of Environmental Health Sciences (NIEHS) and the U.K. National Radiological Protection Board (NRPB). \u0000 \u0000 \u0000 \u0000Electric power systems in the United States, Canada, and Mexico generate and transmit electricity as alternating current (ac), which oscillates at a frequency of 60 cycles per second, or 60 hertz (Hz). Most of the rest of the world generates power at 50Hz. Power-frequency 50- and 60-Hz fields occupy the extremely low-frequency (ELF), nonionizing range of the electromagnetic spectrum. The ELF range includes frequencies from 3 to 3000Hz. Above 3000Hz are, in order of increasing frequency or decreasing wavelength, radio waves, microwaves, infrared radiation, visible light, ultraviolet radiation, x-rays, and gamma rays. Microwaves have enough photon energy to heat tissue; ionizing radiation like x-rays and gamma rays can damage biological systems by breaking chemical bonds. Extremely low-frequency electric and magnetic fields can neither break bonds nor heat tissue, and the electric currents they induce in the body are very weak. \u0000 \u0000 \u0000 \u0000Power-frequency fields have very long wavelengths of about 5000km. Exposure distances are much shorter than this wavelength; under these circumstances, electric and magnetic fields are independent. \u0000 \u0000 \u0000 \u0000Electric field strength increases with increasing voltage, or electric potential; magnetic field strength increases with increasing current. Both electric and magnetic fields decline rapidly with distance from their source, with a faster decline of fields from point sources such as machinery and a slower decline of fields from power lines","PeriodicalId":19820,"journal":{"name":"Patty's Toxicology","volume":"23 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2001-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"88488054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Saturated Methyl Halogenated Aliphatic Hydrocarbons 饱和甲基卤代脂肪烃
Patty's Toxicology Pub Date : 2001-04-16 DOI: 10.1002/0471435139.TOX062
J. B. Reid
{"title":"Saturated Methyl Halogenated Aliphatic Hydrocarbons","authors":"J. B. Reid","doi":"10.1002/0471435139.TOX062","DOIUrl":"https://doi.org/10.1002/0471435139.TOX062","url":null,"abstract":"It is impossible to generalize on the saturated methyl halogenated aliphatic hydrocarbons discussed in this chapter. Physical properties and toxicological manifestations differ over a broad range depending on the particular halogen and the number of halogen atoms involved. \u0000 \u0000 \u0000 \u0000As mentioned in the previous edition, the usefulness of these compounds has been significantly reduced because of the concern over stratospheric ozone depletion. On the other hand, toxicological interest in these compounds has increased because of concern over their production in chlorinated water systems. The USEPA (National Center for Environmental Assessment) and others are actively investigating the possible relationship between chlorination of drinking water sources and human cancer through many avenues, including sophisticated epidemiologic tools. Many of the compounds have been shown to produce cancer in animals, but their potency for humans is still under consideration, and the complex interactions with regard to human health are challenging. \u0000 \u0000 \u0000 \u0000The other area of biochemistry that is of relevance to some of these materials is in regard to lipid peroxidation and its role in disease and in extrapolation from animal species to humans. \u0000 \u0000 \u0000 \u0000As in the previous editions, this review relies extensively on information provided in earlier editions. Several online databases were utilized in searching for the most recent information in preparing the chapter. These included NTP (National Toxicology Program), IRIS (Integrated Risk Information Service), and the ATSDR (Agency for Toxic Substances and Disease Registry) websites. Most recent information was sought through MEDLINE, and, when possible, the original articles were reviewed. Debatably, IRIS was considered to be the last word with regard to cancer. Many of the compounds have been recently reviewed by the ATSDR and are reported in their toxicological profiles. Recent reviews were utilized in preparing this chapter. In addition, the Pocket Guide to Chemical Hazards and the ACGIH's TLV's and Other Occupational Exposure Values-1999 were utilized. \u0000 \u0000 \u0000Keywords: \u0000 \u0000Methyl chloride; \u0000Refrigerant; \u0000Methyl bromide; \u0000Fire extinguishing agents; \u0000Methyl iodide; \u0000Methylene chloride; \u0000Cyanosis; \u0000Chloroform; \u0000Bromoform; \u0000Lacrimator; \u0000Iodoform; \u0000Carbon tetrachloride; \u0000Tetrabromomethane","PeriodicalId":19820,"journal":{"name":"Patty's Toxicology","volume":"58 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2001-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87196228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Cold Stress and Strain 冷应力与应变
Patty's Toxicology Pub Date : 2001-04-16 DOI: 10.1002/0471435139.TOX097
H. Mahar
{"title":"Cold Stress and Strain","authors":"H. Mahar","doi":"10.1002/0471435139.TOX097","DOIUrl":"https://doi.org/10.1002/0471435139.TOX097","url":null,"abstract":"The human body has the thermoregulatory capacity to maintain its body temperature within about 1°C of normal (i.e., 37°C) under a variety of external environmental temperatures. When the body's heat loss to the environment is greater than its ability to maintain its internal homeostatic temperature, the body undergoes cold strain in response to the external cold temperature stress. Prolonged exposure to any temperature less than normal body temperature to which the body's thermoregulatory capacity cannot accommodate may result in cold-related injuries to tissues or cause other systemic changes, including hypothermia and death. Those injuries may involve local tissue damage that results when the tissue actually freezes (e.g., frostbite) or that can result from nonfreezing conditions in tissue sufficient to cause temporary or permanent vascular damage (e.g., chilblain, immersion foot). Heat loss sufficient to overcome the body's thermoregulatory mechanisms can produce a critical drop in the body's deep-core temperature and eventually hypothermia and death. \u0000 \u0000 \u0000 \u0000Exposure to cold stress may also produce physiological or metabolic changes or shifts in endocrine systems, affect judgment or behavior, or exacerbate existing medical conditions (e.g., cardiovascular disease). For acute exposures, the body's response to cold stress is a function of the rate of heat loss, the temperature to which the individual is exposed, and the duration of exposure. For chronic exposures which produce subtle endocrine and metabolic shifts, the diurnal or seasonal (e.g., circannual) periodicity of that exposure may be more important than the environmental temperature to which the person is exposed. In assessing the impacts of exposures to cold stress, one should differentiate between normal changes that result as the body accommodates to that stress (homeostatic response mechanisms) and actual damage or disruption that result when the body's homeostatic response mechanisms are exceeded. \u0000 \u0000 \u0000Keywords: \u0000 \u0000Cold stress; \u0000Prevalence response; \u0000Thermoregulatory control; \u0000Delayed thermoregulatory control; \u0000Adaptation; \u0000Injuries; \u0000Freezing cold injuries; \u0000Nonfreezing cold injuries; \u0000Hypothermia; \u0000Manual performance; \u0000Cognitive function; \u0000Endocrine function; \u0000Respiratory system; \u0000Immunological responses; \u0000Carcinogenesis; \u0000Control; \u0000Exposure standards","PeriodicalId":19820,"journal":{"name":"Patty's Toxicology","volume":"138 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2001-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"77521943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Toxic Chemical Information Sources 有毒化学品信息来源
Patty's Toxicology Pub Date : 2001-04-16 DOI: 10.1002/0471435139.tox009
B. Cohrssen
{"title":"Toxic Chemical Information Sources","authors":"B. Cohrssen","doi":"10.1002/0471435139.tox009","DOIUrl":"https://doi.org/10.1002/0471435139.tox009","url":null,"abstract":"Knowing where to go to get relevant up-to-date as well as state-of-the-art information about the health effects of a chemical is essential for effective protection of workers and the environment. The means to access information is changing every day and the amount of occupational health and safety information is expanding. Finding information to prepare a MSDS, to respond to an emergency, to meet legislative and regulatory requirements, to determine the cause of an illness, or to develop a health and safety program can be challenging, overwhelming, and time-consuming. Toxicological information and data are of interest to more than workers, toxicologists, industrial hygienists, lawyers, and regulators. The general public is increasingly interested in the health effects of industrial chemicals. \u0000 \u0000 \u0000 \u0000Depending upon who wants the information and why they want it affects the use it will have and the amount of detail required about the chemical. For some, knowing that the basic health effects are respiratory or skin irritation is enough. For others, knowing the mechanics of the way the chemical works in the body will be of interest and required. For still others, the information is needed for an emergency so that whatever information is obtained must be gained quickly. \u0000 \u0000 \u0000 \u0000The recency of the information may affect which information sources are used. Electronic data bases, which have become a fact of life and are probably now the first source of reference for most people looking for chemical information and toxicological data, may not be the best resource. Electronic data bases can include both CD-ROMs and on-line databases available either directly from the service provider such as DIALOG, MEDLINE, or CCOHS or via the Internet. The government sources of information are usually free; however, there are fees for many of the other services. Comprehensive information and data are necessary to develop regulations to protect people and the environment from the effects of exposure from a chemical; all of this information may not be available from an electronic source. But electronic data sources are the places to go to quickly to find current toxicological data. There are a number of different methods of finding electronic data sources, and they are discussed later in the chapter. \u0000 \u0000 \u0000 \u0000There are a number of different types of safety, health, and toxicological information sources. These include traditional paper sources such as books, journals, and periodicals which were the typical sources of information before about 1970. There are also gray data. Gray data can include private or government research reports that have not been published, company catalogs, and material safety data sheets (MSDSs). These information sources are called gray data because they are difficult to find and are not always readily available. Still other sources of health and safety data are laws, standards, and patents in print. A preamble to a Federal OSHA health standard provide","PeriodicalId":19820,"journal":{"name":"Patty's Toxicology","volume":"4 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2001-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78744102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurotoxicology and Behavior 神经毒理学和行为学
Patty's Toxicology Pub Date : 2001-04-16 DOI: 10.1002/0471435139.TOX025.PUB2
W. Boyes
{"title":"Neurotoxicology and Behavior","authors":"W. Boyes","doi":"10.1002/0471435139.TOX025.PUB2","DOIUrl":"https://doi.org/10.1002/0471435139.TOX025.PUB2","url":null,"abstract":"Neurotoxicity is important to consider as a component of occupational and environmental safety and health programs. The failure to do so has contributed to a number of tragic cases in which workers, consumers of manufactured products, and people exposed in the environment were irreparably harmed by exposure to industrial compounds that proved toxic to the nervous system. The National Institute for Occupational Safety and Health (NIOSH) has listed neurotoxic disorders as one of the ten leading occupational problems in the United States. Many of the most severe environmental, industrial, and commercial human health disasters attributable to chemical exposure have involved neurotoxic effects. In Detroit, Michigan, in 1934, for example, an automotive redesign required grinding large amounts of excess lead solder from each car. Inhalation of the resulting lead dust produced between 2,700 and 4,000 cases of lead poisoning whose symptoms ranged from mild gastrointestinal upset to severe neurological deficits, including peripheral neuropathy and encephalopathy. As many as 12 people may have died. In another case that occurred during the Prohibition Era, a single batch of the popular ethanol-based elixir “Ginger Jake” was adulterated with tri-o-cresylphosphate (TOCP). This batch was then distributed throughout the southeastern and midwestern United States. As many as 50,000 people suffered peripheral neuropathy caused by degeneration of the large, long axons in the peripheral nerves of the legs and spinal cord. In a food contamination episode, 459 people were killed and more than 6,500 became ill in Iraq from methylmercury which was applied as a fungicide to seed grain intended for planting, but which was instead ground into flour and cooked into bread. Methylmercury was also the cause of environmental poisonings in Minamata Bay, Japan, in which industrial effluent discharged into the Bay bioconcentrated in the food chain and eventually led to exposure of thousands of inhabitants who consumed seafood from the bay. The effects on Minamata children exposed in utero were particularly severe. Since that time methlymercury poisoning has been referred to as “Minamata disease.” \u0000 \u0000 \u0000 \u0000Fortunately, catastrophic disasters are relatively rare occurrences that typically involve exposures to high concentrations of neurotoxic compounds. A more common concern in occupational and environmental settings is exposure to lower levels of potentially neurotoxic compounds, for long periods of time. It is important to consider neurotoxicity in long-term, low-level exposure situations. Many occupational and environmental exposure standards have been established on the basis of effects on the nervous system. There is also concern that subtle neurotoxic damage might not be evident at the time of exposure due to the plasticity and functional reserve capacity of the nervous system but may become manifest later. Damage inflicted long ago may become evident as individuals age or under","PeriodicalId":19820,"journal":{"name":"Patty's Toxicology","volume":"8 1","pages":"35-74"},"PeriodicalIF":0.0,"publicationDate":"2001-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"79959443","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Tuberculosis and Other Mycobacteria 结核和其他分枝杆菌
Patty's Toxicology Pub Date : 2001-04-16 DOI: 10.1002/0471435139.TOX021
D. Gardner
{"title":"Tuberculosis and Other Mycobacteria","authors":"D. Gardner","doi":"10.1002/0471435139.TOX021","DOIUrl":"https://doi.org/10.1002/0471435139.TOX021","url":null,"abstract":"The genus Mycobacterium is one of the most widely distributed bacteria genera in nature and includes those organisms that cause two of the world's most prevalent infectious diseases in humans, M. tuberculosis, the agent of tuberculosis and M. leprae, the agent of leprosy. A large number of other species in this genera are widespread and occur as contaminants in soil, water, or organic debris. These organisms may be ingested or inhaled in dust particles and produce syndromes that are indistinguishable from classic tuberculosis. The term tuberculosis (TB) is commonly applied to all cases of mycobacterial infections except leprosy. Many of these infections are now being recognized more frequently in immunosuppressed patients who have organ transplants, individuals being treated for leukemia or cancer, and patients suffering from AIDS. In most cases of TB in humans, the lungs are the major organ affected but other tissues and organs such as bone, skin, and the digestive tract may also be infected. Although this chapter focuses primarily on tuberculosis, a discussion of a few of these other opportunistic organisms in this genus that are associated with human disease are also discussed. \u0000 \u0000 \u0000 \u0000The bibliography provided will guide the readers to works which they can consult for more detailed information about these organisms. These references contain discussions on taxonomy, growth requirements, as well as the morphological characteristics, physiology, pathogenicity, and the metabolic activity of these organisms. \u0000 \u0000 \u0000Keywords: \u0000 \u0000Tuberculosis; \u0000Organisms; \u0000Sources; \u0000Health issues; \u0000Risk factors; \u0000Prevention; \u0000Treatment","PeriodicalId":19820,"journal":{"name":"Patty's Toxicology","volume":"22 1","pages":"747-761"},"PeriodicalIF":0.0,"publicationDate":"2001-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"82097196","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Esters of Mono‐ and Alkenyl Carboxylic Acids and Mono‐ and Polyalcohols 单羧酸和烯基羧酸酯以及单醇和多醇酯
Patty's Toxicology Pub Date : 2001-04-16 DOI: 10.1002/0471435139.TOX079
M. Bisesi
{"title":"Esters of Mono‐ and Alkenyl Carboxylic Acids and Mono‐ and Polyalcohols","authors":"M. Bisesi","doi":"10.1002/0471435139.TOX079","DOIUrl":"https://doi.org/10.1002/0471435139.TOX079","url":null,"abstract":"This volume contains three chapters reviewing 12 classes of the organic compounds called esters. Chapter 79, this chapter, reviews (1) esters of monocarboxylic acids and mono- and polyalcohols and (2) esters of alkenyl carboxylic acids and monoalcohols; Chapter 80 reviews (3) esters of aromatic monocarboxylic acids and monoalcohols, (4) esters of monocarboxylic acids and di-, tri-, and polyalcohol; (5) dicarboxylic acid esters; (6) alkenyl dicarboxylic esters; (7) esters of aromatic diacids; (8) tricarboxylic acid esters; and, Chapter 81 covers (9) esters of carbonic and orthocarbonic acid; (10) esters of organic phosphorous compounds; (11) esters of monocarboxylic halogenated acids, alkanols, or haloalcohols; and (12) organic silicon esters. \u0000 \u0000 \u0000 \u0000The sequence of the compounds has been organized according to the chemical structure of the major functional metabolites. This involves the ester hydrolyzates, primarily the acid and secondarily the alcohol. The reason for this sequence was the general observation that the degree of toxic effect, in addition to that of the original material, more often was the result of the toxicity of the acid rather than the response of the alcohol. \u0000 \u0000 \u0000 \u0000Esters are important from an industrial hygiene perspective since exposure can occur during the process of manufacturing esters, the process of manufacturing materials containing or composed of esters, handling and use of products containing or composed of esters, and treatment of wastes containing esters. In turn, exposure to esters is important from a toxicological perspective because of the correlated observations of adverse physiological responses exhibited by laboratory animals and humans. \u0000 \u0000 \u0000 \u0000Overviews of the physical, chemical and toxicologic (i.e., physiologic responses) properties of many subclasses of esters and/or of specific compounds are provided. In addition, summaries of relative manufacturing and use information are also included for many compounds. \u0000 \u0000 \u0000 \u0000Chemically, esters are organic compounds commonly formed via the combination of an acid, typically an organic (COOH) mono- or polyacid, plus a hydroxyl (OH) group of a mono-or polyalcohol or phenol; water (HOH) is generated as a by-product of the reaction. \u0000 \u0000 \u0000 \u0000The esters are widely used in industry and commerce. They can be prepared by the reactions of acids with alcohols, by reacting metal salts of acids with alkyl halides, acid halides with alcohols, or acid anhydrides with alcohols by the interchange of radicals between esters. Most esters exist in liquid form at ambient temperatures, but some possess lower boiling points than their original starting materials. They are relatively water-insoluble, except for the lower molecular weight members. Their flash points are in the flammable range. The monocarboxylic acid esters have high volatility and pleasant odors, whereas the di- and polyacid esters are relatively nonvolatile and exhibit essentially no odor. The monocarboxylic esters occur f","PeriodicalId":19820,"journal":{"name":"Patty's Toxicology","volume":"68 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2001-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"74112470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Regulations and Guidelines In the Workplace 工作场所的规定和指导方针
Patty's Toxicology Pub Date : 2001-04-16 DOI: 10.1002/0471435139.tox008
E. Bingham, Cih L. Faye Grimsley Msph
{"title":"Regulations and Guidelines In the Workplace","authors":"E. Bingham, Cih L. Faye Grimsley Msph","doi":"10.1002/0471435139.tox008","DOIUrl":"https://doi.org/10.1002/0471435139.tox008","url":null,"abstract":"Occupational diseases can be used as the first historical markers for concern about toxic substances in the workplace. The passage in 1798 of the Act for the Relief of Sick and Disabled Seamen established The Marine Hospital Service, which was later named the Public Health Service. This was the first real legislation that dealt with occupational disease. \u0000 \u0000 \u0000 \u0000Research and technology provide the rationale and the methodologies used to develop legislation, regulations, and guidelines that reduced workplace hazards. However, the main factors bringing about the passage of laws and/or regulations are likely to be social. These have included catastrophes, such as mine explosions, asbestos disease, epidemics, and the Gauley bridge episode, political movements such as the environmental and civil rights movements, and organizations capable of pressing for legislation, such as labor organizations, community groups, and trade associations. \u0000 \u0000 \u0000 \u0000In the early part of this century, regulations and guidelines to control toxic substances in workplaces emerged out of social forces such as those introduced by labor unions and social reformers. States were at the forefront of early efforts on worker health. Among governmental bodies, the development of guidelines and regulations covering toxic substances was varied. \u0000 \u0000 \u0000 \u0000Among the governmental bodies in the United States, the development of guidelines and regulations for toxic substances evolved over the first half of the twentieth century by a fragmented process. Certain states developed both exposure limits and practices for reducing exposures. In the United States, two major sources of numerical limits for various chemical and physical agents were set by ANSI, which is made up of professionals mainly from industry, government, and sometimes academia. ACGIH membership consisted of professionals employed in government (federal, state, or local) and academia, but input was routinely sought from industry specialists. \u0000 \u0000 \u0000 \u0000The TLV Committee of the ACGIH, established in 1941, was composed of six nationally recognized industrial hygienists and toxicologists not associated with private industry. \u0000 \u0000 \u0000 \u0000TLVs were prepared only for the use of industrial hygienists, who could exercise their own judgment in applying these values. They were not to be used for legal purposes. TLVs are based on the best available information from industrial experience and human and animal experimental studies—when possible, from a combination of these sources. The rationale for choosing limiting values differs from substance to substance. \u0000 \u0000 \u0000 \u0000The issue of threshold effects is controversial, and scientists argue for and against threshold theories. Beginning in 1988, concerns were raised by numerous persons regarding the adequacy or health protectiveness of TLVs. The key question raised was, do the TLVs protect enough workers. \u0000 \u0000 \u0000 \u0000OELs have also been set by OSHA and NIOSH. Under the OSHAct, exposure limits are set via specific proc","PeriodicalId":19820,"journal":{"name":"Patty's Toxicology","volume":"29 1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2001-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"78882843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Iron and Cobalt 铁和钴
Patty's Toxicology Pub Date : 2001-04-16 DOI: 10.1002/0471435139.TOX040
L. Grimsley, E. L. Harris
{"title":"Iron and Cobalt","authors":"L. Grimsley, E. L. Harris","doi":"10.1002/0471435139.TOX040","DOIUrl":"https://doi.org/10.1002/0471435139.TOX040","url":null,"abstract":"This chapter discusses iron and cobalt and other selected compounds that exist with these specific elements. Elemental iron has been known since prehistoric times. Around 1200 b.c., iron was obtained from its ores; this achievement marks the beginning of the Iron Age. Even with the development of other materials, iron and its alloys remain crucial in the economies of modern countries. Iron is also critical to life. It is an essential element and a component of hemoglobin. Cobalt was known to be used by early civilizations. Minerals containing cobalt were of value to early Egyptians and Mesoptamia for coloring glass deep blue. \u0000 \u0000 \u0000 \u0000Iron is the fourth most abundant element (5.1%) in the earth's crust. The molten core of the earth is primarily elemental iron. Iron occasionally occurs in its pure form; however, it is abundant in combination with other elements as oxides, sulfides, carbonates, and silicates. The physical properties of iron, the metal, are profoundly affected by impurities and by changes in temperature and treatment. Iron is superior to all other elements in magnetic properties. \u0000 \u0000 \u0000 \u0000Iron forms a large group of materials known as ferroalloys that are important as addition agents in steelmaking. Iron is also a major constituent of many special-purpose alloys developed for characteristics related to magnetic properties, electrical resistance, heat resistance, corrosion resistance, and thermal expansion. Other compounds and then uses are discussed. \u0000 \u0000 \u0000 \u0000Mining and handling of iron ores provide exposure to dusts of SiO2 and iron oxides. Carbon monoxide is a hazard in the operation of blast furnaces for the production of pig iron. The use of fluorspar (CaF2) in steelmaking gives rise to gases containing SiF4 and other fluorine-containing substances. The manufacture of alloy steels introduces hazards attendant on the use of metals such as chromium, manganese, nickel, vanadium, tungsten, molybdenum, and copper. “Pickling” of iron containing arsenic and phosphorus liberates arsine and phosphine. Certain grades of ferrosilicon used in steelmaking decompose with explosive violence on contact with moist air, evolving various toxic gases such as acetylene, H2S, SiH4, AsH3, and PH3. Fatal intoxications have occurred from such accidents during transportation, particularly at sea. \u0000 \u0000 \u0000 \u0000Because iron is essential to health, iron supplements are frequently used in the treatment of iron deficiency or iron malabsorption syndromes. Iron dextran is a complex of ferric hydroxide with dextran. It is injected to treat iron-deficiency anemia in humans and in baby pigs. Exposure occurs in manufacturing and repacking, and use is limited. Slightly more than 1000 workers may be also exposed; about half are women. A great many more workers are exposed in the manufacture of oral iron preparations. \u0000 \u0000 \u0000 \u0000Cobalt is a hard, silver metal with a blue sheen. Physical and chemical properties of cobalt and some of its compounds are listed. \u0000 \u0000 \u0000 \u0000Cobalt is a hard ma","PeriodicalId":19820,"journal":{"name":"Patty's Toxicology","volume":"43 1","pages":"637-652"},"PeriodicalIF":0.0,"publicationDate":"2001-04-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80909258","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信