NukleonikaPub Date : 2022-06-01DOI: 10.2478/nuka-2022-0003
Eslam M. Taha, Ezzat A. Elmoujarkach, A. Balamesh, S. Alzaidi, A. Alhawsawi
{"title":"Utilization of an energy-resolving detection system for mammography applications: A preliminary study","authors":"Eslam M. Taha, Ezzat A. Elmoujarkach, A. Balamesh, S. Alzaidi, A. Alhawsawi","doi":"10.2478/nuka-2022-0003","DOIUrl":"https://doi.org/10.2478/nuka-2022-0003","url":null,"abstract":"Abstract Breast cancer remains one of the major causes of mortality among female cancer patients. This fact caused a spark in the medical field, which in turn helped to improve the diagnostic and treatment of breast cancer patients over the years making this field always active with new ideas and innovative methods. In our study, a new method was explored using an energy-resolving detection system made from a NaI (Tl) scintillation detector to detect the gamma photons from an Am-241 radiation source to try and construct an image by scanning the American College of Radiology (ACR) mammography phantom. In addition to the experimental work, a Geant4 Application for Tomographic Emission (GATE) toolkit was used to investigate more complex options to improve the image quality of mammographic systems, which is limited by the experimental setup. From the experimental setup, the researchers were able to construct an image using the 26.3 keV and the 59.5 keV energy photons, to show the largest size tumour (12 mm) in the ACR phantom. With an improved setup in the simulation environment, the majority of the ACR phantom tumours was visible using both energy windows from the 26.3 keV and the 59.5 keV, where the 26.3 keV yielded better quality images showing four tumours compared to three when using 59.5 keV. The simulation results were promising; however, several improvements need to be incorporated into the experimental work so that the system can generate high-resolution mammographic images similar to the ones obtained by the GATE simulation setup.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49156921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2022-02-17DOI: 10.2478/nuka-2022-0001
M. S. Mohammed, A. Alhawsawi, M. S. Aljohani, Mohammed M. Damoom, E. Banoqitah, Ezzat A. Elmoujarkach
{"title":"Prompt gamma-ray methods for industrial process evaluation: A simulation study","authors":"M. S. Mohammed, A. Alhawsawi, M. S. Aljohani, Mohammed M. Damoom, E. Banoqitah, Ezzat A. Elmoujarkach","doi":"10.2478/nuka-2022-0001","DOIUrl":"https://doi.org/10.2478/nuka-2022-0001","url":null,"abstract":"Abstract Radioisotope applications in industrial process inspection and evaluation using gamma-ray emitters provide otherwise unavailable information. Offering alternative gamma-ray sources can support the technology by complementing sources’ availability and radiation safety. This work proposes to replace gamma-ray from radioisotopes with prompt gamma-ray from the interaction of neutrons with stable isotopes injected into the industrial process or with the structural material of the industrial process equipment. Monte Carlo N-Particle Transport Code (MCNP5) was used to simulate the irradiation of two-phase flow pipes by 252Cf neutron source. Two simulations were run for each pipe, with and without mixing the liquid phase with the stable isotope 157Gd. The detected gamma-ray spectra were analysed, and images of the two phases inside the pipes were produced. The images were compared to images obtained from simulations of gamma transmission measurement using 60Co. Furthermore, results for prompt gamma computed tomography (CT) were presented and discussed. The studies’ outcomes indicate the potential of prompt gamma-ray to carry out the sealed sources applications of gamma transmission measurements and imaging.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45817518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2021-12-05DOI: 10.2478/nuka-2021-0034
I. Fijał-Kirejczyk, M. Rogante, J. Milczarek, J. Żołądek-Nowak, Zdzisław Jurkowski, J. Żołądek, D. Rusinek
{"title":"Studies on water transport in quasi two-dimensional porous systems using neutron radiography","authors":"I. Fijał-Kirejczyk, M. Rogante, J. Milczarek, J. Żołądek-Nowak, Zdzisław Jurkowski, J. Żołądek, D. Rusinek","doi":"10.2478/nuka-2021-0034","DOIUrl":"https://doi.org/10.2478/nuka-2021-0034","url":null,"abstract":"Abstract The spontaneous wetting and drying of flat porous samples of linen, cotton and synthetic textiles were studied using dynamic neutron radiography (DNR). The progress of the wetting process of the media was delineated from the obtained neutron dynamical radiography images. The results of the investigation reveal a non-classical behaviour of kinetics of wicking of these materials. The character of the wetting kinetics is discussed in terms of the fractal character of the tortuosity of fabric capillaries.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44583394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2021-11-25DOI: 10.2478/nuka-2021-0016
Dagmara Chmielewska-Śmietanko, U. Gryczka
{"title":"The International Conference on Development and Applications of Nuclear Technologies, NUTECH-2020, Warsaw, Poland, 4–7 October 2020","authors":"Dagmara Chmielewska-Śmietanko, U. Gryczka","doi":"10.2478/nuka-2021-0016","DOIUrl":"https://doi.org/10.2478/nuka-2021-0016","url":null,"abstract":"","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45468022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2021-11-25DOI: 10.2478/nuka-2021-0026
B. P. Rurarz, Natalia Gibka, Małgorzata Bukowczyk, S. Kadłubowski, P. Ulański
{"title":"Radiation synthesis of poly(acrylic acid) nanogels for drug delivery applications – post-synthesis product colloidal stability","authors":"B. P. Rurarz, Natalia Gibka, Małgorzata Bukowczyk, S. Kadłubowski, P. Ulański","doi":"10.2478/nuka-2021-0026","DOIUrl":"https://doi.org/10.2478/nuka-2021-0026","url":null,"abstract":"Abstract Synthesis of polymer nanogels (NGs) for biomedical applications is considered to be a very promising application in radiation engineering. Under high-dose pulse irradiation of dilute aqueous polymer solution, reactive species generated by water radiolysis can create multiple radicals on each macromolecule and consequently induce intramolecular cross-linking of polymer chains, resulting in NG formation. The obtained products are free from harmful monomers, initiators, and cross-linking agents, which makes them potentially applicable for drug delivery applications. One of the biggest challenges in handling and use of nanoparticles, however, is the colloidal stability, when aqueous suspensions are stored for prolonged periods. Therefore, development of the best protocols for the particular nanocarrier storage is key. To address this need, we have performed the prospective study in which we systematically assessed the influence of various processing and storage scenarios feasible in our lab, on the colloidal stability of the radiation-synthesized poly(acrylic acid) (PAA) NG particles in suspension. This allowed us to choose the optimal way of handling the product after its synthesis. We confirmed that none of the strategies we used and tested are substantially detrimental to our product. Filtration with 0.2-μm filters was proven sufficient for sample purification and prolonged storage in aqueous suspension did not exert a negative effect on the colloidal stability of particles suspension. We have also demonstrated that lyoprotectant-free lyophilization was suitable for our polymer nanoparticles. This is an important fact for further application of particles as nanocarriers for biologically active compounds such as targeting ligands or therapeutic moieties.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49414975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2021-11-25DOI: 10.2478/nuka-2021-0025
Katsiaryna Dziarabina, U. Pinaeva, S. Kadłubowski, P. Ulański, X. Coqueret
{"title":"Radiolytic synthesis of gold nanoparticles in HEMA-based hydrogels: Potentialities for imaging nanocomposites","authors":"Katsiaryna Dziarabina, U. Pinaeva, S. Kadłubowski, P. Ulański, X. Coqueret","doi":"10.2478/nuka-2021-0025","DOIUrl":"https://doi.org/10.2478/nuka-2021-0025","url":null,"abstract":"Abstract This article reports on the radiolytic synthesis of nanocomposites containing gold nanoparticles (AuNPs) within two types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA): (i) plain networks with various contents in ethylene glycol dimethacrylate (EGDMA), as a cross-linker and (ii) stimuli-responsive (SR) networks prepared from these monomers copolymerized with [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MADQUAT) to confer pH-switchable swelling. Hydrogels were prepared by photopolymerization with well-defined composition and a high degree of monomer conversion using two experimental procedures, as xerogels or in aqueous solution. Besides MADQUAT, acrylic acid (AA) or N-isopropylacrylamide have been tested as copolymers, yielding pHor temperature-sensitive hydrogels, respectively. Isothermal swelling in water was affected by monomer composition. Electron beam (EB) irradiation at doses up to 100 kGy of poly(HEMA) xerogels and water-swollen networks prepared with 0.5 wt% of EGDMA had a moderate impact on swelling characteristics and thermomechanical properties of the plain materials, whereas small amounts of extractables were formed. Poly(HEMA)-based nanocomposites containing AuNPs were successfully obtained by EB irradiation of samples swollen by aqueous solutions of Au(III). The effects of dose and cross-linking density on the formation of AuNPs were monitored by UV-visible spectroscopy. Irradiation at well-defined temperatures of the Au(III)-loaded SR hydrogels induced the formation of nanoparticles with size-dependent features, whereas the efficiency of Au(III) reduction at 10 kGy was not significantly affected by the network structure. EB-induced reduction of Au(III) in poly(HEMA) hydrogels using a lead mask to generate well-defined patterns yielded coloured and long-lasting images in the zones where the nanocomposite was formed.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43000317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2021-11-25DOI: 10.2478/nuka-2021-0024
Patrycja Śliż-Szpytma, M. Lankosz, J. Dudała, D. Adamek, E. Radwańska, B. Kwinta, M. Jakšić, I. Božičević Mihalić, G. Provatas
{"title":"Sub-cellular elemental imaging of human muscle tissues affected by neuromuscular diseases","authors":"Patrycja Śliż-Szpytma, M. Lankosz, J. Dudała, D. Adamek, E. Radwańska, B. Kwinta, M. Jakšić, I. Božičević Mihalić, G. Provatas","doi":"10.2478/nuka-2021-0024","DOIUrl":"https://doi.org/10.2478/nuka-2021-0024","url":null,"abstract":"Abstract Various types of neuromuscular diseases differ in symptoms, pathology, and clinical picture but one of their common elements is muscle weakness, which could lead to human motor activities impairment and in many cases to shortening of life span and even death due to respiratory failure. That is why it is very important to better understand the underlying causes of these diseases to be able to implement new methods of treatment more effectively. This paper presents the results of the elemental analysis of human muscular tissues affected by dystrophy and myopathy. For this purpose, the particle-induced X-ray emission method was used, which is perfectly suited for measuring light elements. The samples were analysed for differences in the elemental composition of Na, Mg, P, S, Cl, K, Fe, Zn, and Br. The results were presented in the form of elemental concentration maps and a thorough statistical analysis of the obtained data using the advanced statistical methods.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45921003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2021-11-25DOI: 10.2478/nuka-2021-0033
A. Pawelec, A. Chmielewski, Yongxia Sun, S. Bułka, T. Torims, G. Pikurs, G. Mattausch
{"title":"Plasma technology to remove NOx from off-gases","authors":"A. Pawelec, A. Chmielewski, Yongxia Sun, S. Bułka, T. Torims, G. Pikurs, G. Mattausch","doi":"10.2478/nuka-2021-0033","DOIUrl":"https://doi.org/10.2478/nuka-2021-0033","url":null,"abstract":"Abstract Operation of marine diesel engines causes significant emission of sulphur and nitrogen oxides. It was noticed worldwide and the regulations concerning harmful emissions were introduced. There were several solutions elaborated; however, emission control for both SOx and NOx requires two distinctive processes realized in separated devices, which is problematic due to limited space on ship board and high overall costs. Therefore, the electron beam flue gas treatment (EBFGT) process was adopted to ensure the abatement of the problem of marine diesel off-gases. This novel solution combines two main processes: first the flue gas is irradiated with electron beam where NO and SO2 are oxidized; the second stage is wet scrubbing to remove both pollutants with high efficiency. Laboratory tests showed that this process could be effectively applied to remove SO2 and NOx from diesel engine off-gases. Different compositions of absorbing solution with three different oxidants (NaClO, NaClO2 and NaClO3) were tested. The highest NOx removal efficiency (>96%) was obtained when seawater-NaClO2-NaOH was used as scrubber solution at 10.9 kGy dose. The process was further tested in real maritime conditions at Riga shipyard, Latvia. More than 45% NOx was removed at a 5.5 kGy dose, corresponding to 4800 Nm3/h off-gases arising from ship emission. The operation of the plant was the first case of examination of the hybrid electron beam technology in real conditions. Taking into account the experiment conditions, good agreement was obtained with laboratory tests. The results obtained in Riga shipyard provided valuable information for the application of this technology for control of large cargo ship emission.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45401514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2021-11-25DOI: 10.2478/nuka-2021-0023
L. Fuks, Agata Oszczak-Nowińska
{"title":"Sorption of selected radionuclides from liquid radioactive waste by sorbents of biological origin: The alkaline earth alginates","authors":"L. Fuks, Agata Oszczak-Nowińska","doi":"10.2478/nuka-2021-0023","DOIUrl":"https://doi.org/10.2478/nuka-2021-0023","url":null,"abstract":"Abstract The sorption of 241Am3+, 85Sr2+ and 137Cs+ by calcium, strontium and barium alginates has been studied under different operation conditions. The most prominent adsorption was found in the pH range of 5–6 for all systems, even if the observed dependence on the acidity of the solution was small. The most favourable time for the adsorption process was found to be about 2 h for calcium alginate and 4 h for the other two sorbents.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43993462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2021-11-25DOI: 10.2478/nuka-2021-0019
A. Talarowska, M. Lipka, G. Wojtania
{"title":"Preliminary computational and experimental design studies of the ISHTAR thermostatic rig for the high-temperature reactors materials irradiation","authors":"A. Talarowska, M. Lipka, G. Wojtania","doi":"10.2478/nuka-2021-0019","DOIUrl":"https://doi.org/10.2478/nuka-2021-0019","url":null,"abstract":"Abstract The Irradiation System for High-Temperature Reactors (ISHTAR) thermostatic rig will be used to irradiate advanced core material samples in conditions corresponding to those prevailing in the high-temperature reactors (HTRs): these conditions include a stable temperature extending up to 1000°C in the helium atmosphere. Computational and experimental studies concerning the design have been conducted, proving the possibility of these conditions’ fulfillment inside the rig while maintaining the safety limits for MARIA research reactor. The outcome is the thermostatic rig design that will be implemented in the MARIA reactor. Appropriate irradiation temperature will be achieved by a combination of electric heating with the control system, gamma heating, and a helium insulation gap with precisely designed thickness. The ISHTAR rig will be placed inside the vertical irradiation channel, which is located in the reactor pool. The device is being developed from scratch at the Nuclear Facilities Operation Department of the National Centre for Nuclear Research as a part of the GOSPOSTRATEG programme.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":null,"pages":null},"PeriodicalIF":0.7,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47438110","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}