用于药物递送应用的聚(丙烯酸)纳米凝胶的辐射合成——合成后产物的胶体稳定性

IF 0.7 4区 物理与天体物理 Q4 CHEMISTRY, INORGANIC & NUCLEAR
Nukleonika Pub Date : 2021-11-25 DOI:10.2478/nuka-2021-0026
B. P. Rurarz, Natalia Gibka, Małgorzata Bukowczyk, S. Kadłubowski, P. Ulański
{"title":"用于药物递送应用的聚(丙烯酸)纳米凝胶的辐射合成——合成后产物的胶体稳定性","authors":"B. P. Rurarz, Natalia Gibka, Małgorzata Bukowczyk, S. Kadłubowski, P. Ulański","doi":"10.2478/nuka-2021-0026","DOIUrl":null,"url":null,"abstract":"Abstract Synthesis of polymer nanogels (NGs) for biomedical applications is considered to be a very promising application in radiation engineering. Under high-dose pulse irradiation of dilute aqueous polymer solution, reactive species generated by water radiolysis can create multiple radicals on each macromolecule and consequently induce intramolecular cross-linking of polymer chains, resulting in NG formation. The obtained products are free from harmful monomers, initiators, and cross-linking agents, which makes them potentially applicable for drug delivery applications. One of the biggest challenges in handling and use of nanoparticles, however, is the colloidal stability, when aqueous suspensions are stored for prolonged periods. Therefore, development of the best protocols for the particular nanocarrier storage is key. To address this need, we have performed the prospective study in which we systematically assessed the influence of various processing and storage scenarios feasible in our lab, on the colloidal stability of the radiation-synthesized poly(acrylic acid) (PAA) NG particles in suspension. This allowed us to choose the optimal way of handling the product after its synthesis. We confirmed that none of the strategies we used and tested are substantially detrimental to our product. Filtration with 0.2-μm filters was proven sufficient for sample purification and prolonged storage in aqueous suspension did not exert a negative effect on the colloidal stability of particles suspension. We have also demonstrated that lyoprotectant-free lyophilization was suitable for our polymer nanoparticles. This is an important fact for further application of particles as nanocarriers for biologically active compounds such as targeting ligands or therapeutic moieties.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"179 - 186"},"PeriodicalIF":0.7000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Radiation synthesis of poly(acrylic acid) nanogels for drug delivery applications – post-synthesis product colloidal stability\",\"authors\":\"B. P. Rurarz, Natalia Gibka, Małgorzata Bukowczyk, S. Kadłubowski, P. Ulański\",\"doi\":\"10.2478/nuka-2021-0026\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Abstract Synthesis of polymer nanogels (NGs) for biomedical applications is considered to be a very promising application in radiation engineering. Under high-dose pulse irradiation of dilute aqueous polymer solution, reactive species generated by water radiolysis can create multiple radicals on each macromolecule and consequently induce intramolecular cross-linking of polymer chains, resulting in NG formation. The obtained products are free from harmful monomers, initiators, and cross-linking agents, which makes them potentially applicable for drug delivery applications. One of the biggest challenges in handling and use of nanoparticles, however, is the colloidal stability, when aqueous suspensions are stored for prolonged periods. Therefore, development of the best protocols for the particular nanocarrier storage is key. To address this need, we have performed the prospective study in which we systematically assessed the influence of various processing and storage scenarios feasible in our lab, on the colloidal stability of the radiation-synthesized poly(acrylic acid) (PAA) NG particles in suspension. This allowed us to choose the optimal way of handling the product after its synthesis. We confirmed that none of the strategies we used and tested are substantially detrimental to our product. Filtration with 0.2-μm filters was proven sufficient for sample purification and prolonged storage in aqueous suspension did not exert a negative effect on the colloidal stability of particles suspension. We have also demonstrated that lyoprotectant-free lyophilization was suitable for our polymer nanoparticles. This is an important fact for further application of particles as nanocarriers for biologically active compounds such as targeting ligands or therapeutic moieties.\",\"PeriodicalId\":19467,\"journal\":{\"name\":\"Nukleonika\",\"volume\":\"66 1\",\"pages\":\"179 - 186\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nukleonika\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.2478/nuka-2021-0026\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nukleonika","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.2478/nuka-2021-0026","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 3

摘要

摘要用于生物医学应用的聚合物纳米凝胶(NGs)的合成被认为是辐射工程中一个非常有前景的应用。在稀释的聚合物水溶液的高剂量脉冲照射下,水辐解产生的反应物种可以在每个大分子上产生多个自由基,从而诱导聚合物链的分子内交联,从而形成NG。所获得的产品不含有害的单体、引发剂和交联剂,这使它们有可能适用于药物递送应用。然而,在处理和使用纳米颗粒时,最大的挑战之一是当水悬浮液被长时间储存时,胶体的稳定性。因此,开发用于特定纳米载体存储的最佳协议是关键。为了满足这一需求,我们进行了前瞻性研究,系统地评估了实验室中可行的各种加工和储存方案对悬浮液中辐射合成的聚(丙烯酸)(PAA)NG颗粒的胶体稳定性的影响。这使我们能够选择合成后处理产品的最佳方式。我们确认,我们使用和测试的任何策略都不会对我们的产品造成实质性损害。用0.2μm过滤器过滤已被证明足以纯化样品,并且在水悬浮液中长期储存不会对颗粒悬浮液的胶体稳定性产生负面影响。我们还证明了无溶保护剂的冷冻干燥适用于我们的聚合物纳米颗粒。这是进一步应用颗粒作为生物活性化合物(如靶向配体或治疗部分)的纳米载体的重要事实。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Radiation synthesis of poly(acrylic acid) nanogels for drug delivery applications – post-synthesis product colloidal stability
Abstract Synthesis of polymer nanogels (NGs) for biomedical applications is considered to be a very promising application in radiation engineering. Under high-dose pulse irradiation of dilute aqueous polymer solution, reactive species generated by water radiolysis can create multiple radicals on each macromolecule and consequently induce intramolecular cross-linking of polymer chains, resulting in NG formation. The obtained products are free from harmful monomers, initiators, and cross-linking agents, which makes them potentially applicable for drug delivery applications. One of the biggest challenges in handling and use of nanoparticles, however, is the colloidal stability, when aqueous suspensions are stored for prolonged periods. Therefore, development of the best protocols for the particular nanocarrier storage is key. To address this need, we have performed the prospective study in which we systematically assessed the influence of various processing and storage scenarios feasible in our lab, on the colloidal stability of the radiation-synthesized poly(acrylic acid) (PAA) NG particles in suspension. This allowed us to choose the optimal way of handling the product after its synthesis. We confirmed that none of the strategies we used and tested are substantially detrimental to our product. Filtration with 0.2-μm filters was proven sufficient for sample purification and prolonged storage in aqueous suspension did not exert a negative effect on the colloidal stability of particles suspension. We have also demonstrated that lyoprotectant-free lyophilization was suitable for our polymer nanoparticles. This is an important fact for further application of particles as nanocarriers for biologically active compounds such as targeting ligands or therapeutic moieties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nukleonika
Nukleonika 物理-无机化学与核化学
CiteScore
2.00
自引率
0.00%
发文量
5
审稿时长
4-8 weeks
期刊介绍: "Nukleonika" is an international peer-reviewed, scientific journal publishing original top quality papers on fundamental, experimental, applied and theoretical aspects of nuclear sciences. The fields of research include: radiochemistry, radiation measurements, application of radionuclides in various branches of science and technology, chemistry of f-block elements, radiation chemistry, radiation physics, activation analysis, nuclear medicine, radiobiology, radiation safety, nuclear industrial electronics, environmental protection, radioactive wastes, nuclear technologies in material and process engineering, radioisotope diagnostic methods of engineering objects, nuclear physics, nuclear reactors and nuclear power, reactor physics, nuclear safety, fuel cycle, reactor calculations, nuclear chemical engineering, nuclear fusion, plasma physics etc.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信