NukleonikaPub Date : 2023-03-01DOI: 10.2478/nuka-2023-0002
Mateusz Majszyk, A. Bartnik, W. Skrzeczanowski, T. Fok, Ł. Węgrzyński, M. Szczurek, H. Fiedorowicz
{"title":"Investigation of low-temperature plasmas formed in low-density gases surrounding laser-produced plasmas","authors":"Mateusz Majszyk, A. Bartnik, W. Skrzeczanowski, T. Fok, Ł. Węgrzyński, M. Szczurek, H. Fiedorowicz","doi":"10.2478/nuka-2023-0002","DOIUrl":"https://doi.org/10.2478/nuka-2023-0002","url":null,"abstract":"Abstract Low-temperature plasma production is possible as a result of photoionization using high-intensity extreme ultraviolet (EUV) and soft X-ray (SXR) pulses. Plasma of this type is also present in outer space, e.g., aurora borealis. It also occurs when high-velocity objects enter the atmosphere, during which period high temperatures can be produced locally by friction. Low-temperature plasma is also formed in an ambient gas surrounding the hot laser-produced plasma (LPP). In this work, a special system has been prepared for investigation of this type of plasma. The LPP was created inside a chamber filled with a gas under a low pressure, of the order of 1–50 mbar, by a laser pulse (3–9 J, 1–8 ns) focused onto a gas puff target. In such a case, the SXR/EUV radiation emitted from the LPP was partially absorbed in the low-density gas. In this case, high- and low-temperature plasmas (Te ~100 eV and ~1 eV, respectively) were created locally in the chamber. Investigation of the EUV-induced plasmas was performed mainly using spectral methods in ultraviolet/visible (UV/VIS) light. The measurements were performed using an echelle spectrometer, and additionally, spatial–temporal measurements were performed using an optical streak camera. Spectral analysis was supported by the PGOPHER numerical code.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"68 1","pages":"11 - 17"},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42006063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2023-03-01DOI: 10.2478/nuka-2023-0006
Pedro A. Mendes Rossa, Pavel Kuriscák, J. N. Silva, José Veiga, J. Loureiro, João Oliveira, Daniel Hachmeister, H. Fernandes
{"title":"Online and FREE access to plasma physics experiments","authors":"Pedro A. Mendes Rossa, Pavel Kuriscák, J. N. Silva, José Veiga, J. Loureiro, João Oliveira, Daniel Hachmeister, H. Fernandes","doi":"10.2478/nuka-2023-0006","DOIUrl":"https://doi.org/10.2478/nuka-2023-0006","url":null,"abstract":"Abstract Remote controlled laboratories had a great push during the COVID-19 pandemic. In fact, they were already out there but lacking in visibility. This external trigger pushed the academy to face a global challenge to start offering remote experiments more consistently and maturely. Instituto Superior Técnico (IST) has been offering several remote experiments since 2000 but with the need for an update due to technological aging. As such, the framework for remote experiments in education (FREE) was created based on new web technologies. In addition to the most diverse experiments that had already been developed, FREE includes two experiments that aimed at advanced-level physics students: the Langmuir probe and the electromagnetic (EM) cavity. Both allow users to configure the various parameters and to access the results in real time or check back later. All this access is done using a browser (on a PC or mobile phone) without the need to install additional software. The results of an experimental execution are stored in a database and are downloadable, allowing users to do various analyses and to determine the corresponding plasma density and temperature. In this paper, we will introduce how FREE was used in the implementation of both experiments and give an insight into their didactic approach, such as: (i) how to perform an experimental execution, (ii) the typical data set obtained with, and (iii) the corresponding analysis necessary for the user to retrieve information from it.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"68 1","pages":"37 - 46"},"PeriodicalIF":0.7,"publicationDate":"2023-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44124368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2022-12-01DOI: 10.2478/nuka-2022-0006
Karol Wiatr, B. Rubel, M. Kardaś
{"title":"Rapid 90Sr quantification method based on the Bateman equation for routine laboratory work","authors":"Karol Wiatr, B. Rubel, M. Kardaś","doi":"10.2478/nuka-2022-0006","DOIUrl":"https://doi.org/10.2478/nuka-2022-0006","url":null,"abstract":"Abstract Artificially introduced into the environment 90Sr is highly radiotoxic, so its content levels in foodstuff and biota require constant monitoring for radiological protection. Most analytical procedures used for 90Sr determination are time-consuming, and therefore, a faster approach is needed. Employing the Bateman equation enables more efficient exploitation of the secular equilibrium between 90Sr and its daughter radionuclide 90Y in the calculations. This article describes a method for computing the 90Sr activity concentration, while accounting for 90Y activity. The developed approach was tested and validated in terms of its applicability in everyday analysis.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"67 1","pages":"67 - 72"},"PeriodicalIF":0.7,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47244319","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2022-12-01DOI: 10.2478/nuka-2022-0007
R. Kocia
{"title":"Intermediates derived from p-terphenyl in the methyltributylammonium bis[(trifluoromethyl)sulfonyl]imide ionic liquid saturated with carbon dioxide: Pulse radiolysis study","authors":"R. Kocia","doi":"10.2478/nuka-2022-0007","DOIUrl":"https://doi.org/10.2478/nuka-2022-0007","url":null,"abstract":"Abstract Radiation-induced processes in ionic liquid (IL) methyltributylammonium bis[(trifluoromethyl)sulfonyl] imide ([MeBu3N][NTf2]) solutions containing p-terphenyl (TP) and saturated with carbon dioxide (CO2) were studied using nanosecond pulse radiolysis technique with UV-vis detection. The transient absorption spectra generated in these solutions were assigned to TP radical anions (TP•−) and triplet excited states (3TP*). Saturation of [MeBu3N][NTf2] solutions with carbon dioxide efficiently takes out presolvated electrons (epresolv−) ( {{rm{e}}_{{rm{presolv}}}^ - } ) and solvated electrons (esolv−) ( {{rm{e}}_{{rm{solv}}}^ - } ) . On the other hand CO2 is not a scavenger of excited states of TP (1TP*, 3TP*), which in the reaction with triethylamine (TEA) leads to the formation of TP•−.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"67 1","pages":"73 - 80"},"PeriodicalIF":0.7,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43764073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2022-09-01DOI: 10.2478/nuka-2022-0004
M. Matusiak, T. Kosiński, S. Wronka, Tomasz Zakrzewski
{"title":"Observation of intrapulse energy switching in standing-wave electron linac","authors":"M. Matusiak, T. Kosiński, S. Wronka, Tomasz Zakrzewski","doi":"10.2478/nuka-2022-0004","DOIUrl":"https://doi.org/10.2478/nuka-2022-0004","url":null,"abstract":"Abstract For the development of an effective cargo-scanning system, an intrapulse energy switching has been tested at the National Centre for Nuclear Research (NCBJ) with the possibility to change the beam energy within a 4 μs pulse of the linear electron accelerator (linac). Modification of the electron energy is achieved through the beam-loading effect in a standing-wave accelerating structure equipped with a triode gun. Construction of the machine and the achieved results are presented in this article.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"67 1","pages":"43 - 47"},"PeriodicalIF":0.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48609791","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2022-09-01DOI: 10.2478/nuka-2022-0005
T. Szreder
{"title":"Recent upgrading of the nanosecond pulse radiolysis setup and construction of laser flash photolysis setup at the Institute of Nuclear Chemistry and Technology in Warsaw, Poland","authors":"T. Szreder","doi":"10.2478/nuka-2022-0005","DOIUrl":"https://doi.org/10.2478/nuka-2022-0005","url":null,"abstract":"Abstract Modification of pulse radiolysis (PR) setup and construction of a new laser flash photolysis (LFP) setup at the Institute of Nuclear Chemistry and Technology (INCT) is described. Both techniques are dedicated to studying fast reactions in real time by direct observation of transients. Time resolution of the PR setup at INCT was ~11 ns, limited by the duration of the electron pulse. Implementation of a new spectrophotometric detection system resulted in a significant broadening of experimental spectral range with respect to the previous setup. Noticeable reduction of the noise-to-signal ratio was also achieved. The LFP system was built from scratch. Its time resolution was ~6 ns, limited by the duration of a laser pulse. LFP and PR were purposely designed to share the same hardware and software solutions. Therefore, components of the detection systems can be transferred between both setups, significantly lowering the costs and shortening the construction/upgrading time. Opened architecture and improved experimental flexibility of both techniques were accomplished by implementation of Ethernet transmission control protocol/Internet protocol (TCP/IP) communication core and newly designed software. This is one of the most important enhancements. As a result, new experimental modes are available for both techniques, improving the quality and reducing the time of data collections. In addition, both systems are characterized by relatively high redundancy. Currently, implementation of new equipment into the systems hardly ever requires programming. In contrast to the previous setup, daily adaptations of hardware to experimental requirements are possible and relatively easy to perform.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"15 2","pages":"49 - 64"},"PeriodicalIF":0.7,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41299266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2022-06-01DOI: 10.2478/nuka-2022-0003
Eslam M. Taha, Ezzat A. Elmoujarkach, A. Balamesh, S. Alzaidi, A. Alhawsawi
{"title":"Utilization of an energy-resolving detection system for mammography applications: A preliminary study","authors":"Eslam M. Taha, Ezzat A. Elmoujarkach, A. Balamesh, S. Alzaidi, A. Alhawsawi","doi":"10.2478/nuka-2022-0003","DOIUrl":"https://doi.org/10.2478/nuka-2022-0003","url":null,"abstract":"Abstract Breast cancer remains one of the major causes of mortality among female cancer patients. This fact caused a spark in the medical field, which in turn helped to improve the diagnostic and treatment of breast cancer patients over the years making this field always active with new ideas and innovative methods. In our study, a new method was explored using an energy-resolving detection system made from a NaI (Tl) scintillation detector to detect the gamma photons from an Am-241 radiation source to try and construct an image by scanning the American College of Radiology (ACR) mammography phantom. In addition to the experimental work, a Geant4 Application for Tomographic Emission (GATE) toolkit was used to investigate more complex options to improve the image quality of mammographic systems, which is limited by the experimental setup. From the experimental setup, the researchers were able to construct an image using the 26.3 keV and the 59.5 keV energy photons, to show the largest size tumour (12 mm) in the ACR phantom. With an improved setup in the simulation environment, the majority of the ACR phantom tumours was visible using both energy windows from the 26.3 keV and the 59.5 keV, where the 26.3 keV yielded better quality images showing four tumours compared to three when using 59.5 keV. The simulation results were promising; however, several improvements need to be incorporated into the experimental work so that the system can generate high-resolution mammographic images similar to the ones obtained by the GATE simulation setup.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"67 1","pages":"35 - 40"},"PeriodicalIF":0.7,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49156921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2022-02-17DOI: 10.2478/nuka-2022-0001
M. S. Mohammed, A. Alhawsawi, M. S. Aljohani, Mohammed M. Damoom, E. Banoqitah, Ezzat A. Elmoujarkach
{"title":"Prompt gamma-ray methods for industrial process evaluation: A simulation study","authors":"M. S. Mohammed, A. Alhawsawi, M. S. Aljohani, Mohammed M. Damoom, E. Banoqitah, Ezzat A. Elmoujarkach","doi":"10.2478/nuka-2022-0001","DOIUrl":"https://doi.org/10.2478/nuka-2022-0001","url":null,"abstract":"Abstract Radioisotope applications in industrial process inspection and evaluation using gamma-ray emitters provide otherwise unavailable information. Offering alternative gamma-ray sources can support the technology by complementing sources’ availability and radiation safety. This work proposes to replace gamma-ray from radioisotopes with prompt gamma-ray from the interaction of neutrons with stable isotopes injected into the industrial process or with the structural material of the industrial process equipment. Monte Carlo N-Particle Transport Code (MCNP5) was used to simulate the irradiation of two-phase flow pipes by 252Cf neutron source. Two simulations were run for each pipe, with and without mixing the liquid phase with the stable isotope 157Gd. The detected gamma-ray spectra were analysed, and images of the two phases inside the pipes were produced. The images were compared to images obtained from simulations of gamma transmission measurement using 60Co. Furthermore, results for prompt gamma computed tomography (CT) were presented and discussed. The studies’ outcomes indicate the potential of prompt gamma-ray to carry out the sealed sources applications of gamma transmission measurements and imaging.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"67 1","pages":"11 - 18"},"PeriodicalIF":0.7,"publicationDate":"2022-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45817518","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2021-12-05DOI: 10.2478/nuka-2021-0034
I. Fijał-Kirejczyk, M. Rogante, J. Milczarek, J. Żołądek-Nowak, Zdzisław Jurkowski, J. Żołądek, D. Rusinek
{"title":"Studies on water transport in quasi two-dimensional porous systems using neutron radiography","authors":"I. Fijał-Kirejczyk, M. Rogante, J. Milczarek, J. Żołądek-Nowak, Zdzisław Jurkowski, J. Żołądek, D. Rusinek","doi":"10.2478/nuka-2021-0034","DOIUrl":"https://doi.org/10.2478/nuka-2021-0034","url":null,"abstract":"Abstract The spontaneous wetting and drying of flat porous samples of linen, cotton and synthetic textiles were studied using dynamic neutron radiography (DNR). The progress of the wetting process of the media was delineated from the obtained neutron dynamical radiography images. The results of the investigation reveal a non-classical behaviour of kinetics of wicking of these materials. The character of the wetting kinetics is discussed in terms of the fractal character of the tortuosity of fabric capillaries.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"67 1","pages":"3 - 9"},"PeriodicalIF":0.7,"publicationDate":"2021-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44583394","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
NukleonikaPub Date : 2021-11-25DOI: 10.2478/nuka-2021-0025
Katsiaryna Dziarabina, U. Pinaeva, S. Kadłubowski, P. Ulański, X. Coqueret
{"title":"Radiolytic synthesis of gold nanoparticles in HEMA-based hydrogels: Potentialities for imaging nanocomposites","authors":"Katsiaryna Dziarabina, U. Pinaeva, S. Kadłubowski, P. Ulański, X. Coqueret","doi":"10.2478/nuka-2021-0025","DOIUrl":"https://doi.org/10.2478/nuka-2021-0025","url":null,"abstract":"Abstract This article reports on the radiolytic synthesis of nanocomposites containing gold nanoparticles (AuNPs) within two types of hydrogels based on 2-hydroxyethyl methacrylate (HEMA): (i) plain networks with various contents in ethylene glycol dimethacrylate (EGDMA), as a cross-linker and (ii) stimuli-responsive (SR) networks prepared from these monomers copolymerized with [2-(methacryloyloxy)ethyl]trimethylammonium chloride (MADQUAT) to confer pH-switchable swelling. Hydrogels were prepared by photopolymerization with well-defined composition and a high degree of monomer conversion using two experimental procedures, as xerogels or in aqueous solution. Besides MADQUAT, acrylic acid (AA) or N-isopropylacrylamide have been tested as copolymers, yielding pHor temperature-sensitive hydrogels, respectively. Isothermal swelling in water was affected by monomer composition. Electron beam (EB) irradiation at doses up to 100 kGy of poly(HEMA) xerogels and water-swollen networks prepared with 0.5 wt% of EGDMA had a moderate impact on swelling characteristics and thermomechanical properties of the plain materials, whereas small amounts of extractables were formed. Poly(HEMA)-based nanocomposites containing AuNPs were successfully obtained by EB irradiation of samples swollen by aqueous solutions of Au(III). The effects of dose and cross-linking density on the formation of AuNPs were monitored by UV-visible spectroscopy. Irradiation at well-defined temperatures of the Au(III)-loaded SR hydrogels induced the formation of nanoparticles with size-dependent features, whereas the efficiency of Au(III) reduction at 10 kGy was not significantly affected by the network structure. EB-induced reduction of Au(III) in poly(HEMA) hydrogels using a lead mask to generate well-defined patterns yielded coloured and long-lasting images in the zones where the nanocomposite was formed.","PeriodicalId":19467,"journal":{"name":"Nukleonika","volume":"66 1","pages":"165 - 177"},"PeriodicalIF":0.7,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43000317","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}