{"title":"On the splitting of the Kummer exact sequence","authors":"J. Gillibert, Pierre Gillibert","doi":"10.5802/pmb.34","DOIUrl":"https://doi.org/10.5802/pmb.34","url":null,"abstract":"We prove the splitting of the Kummer exact sequence and related exact sequences in arithmetic geometry.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"28 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"126574141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A note on Kawashima functions","authors":"Shuji Yamamoto","doi":"10.5802/pmb.38","DOIUrl":"https://doi.org/10.5802/pmb.38","url":null,"abstract":"This note is a survey of results on the function $F_{mathbf{k}}(z)$ introduced by G. Kawashima, and its applications to the study of multiple zeta values. We stress the viewpoint that the Kawashima function is a generalization of the digamma function $psi(z)$, and explain how various formulas for $psi(z)$ are generalized. We also discuss briefly the relationship of the results on the Kawashima functions with a recent work on Kawashima's MZV relation by M. Kaneko and the author.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"289 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2017-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116403165","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Weber’s formula for the bitangents of a smooth plane quartic","authors":"Alessio Fiorentino","doi":"10.5802/pmb.33","DOIUrl":"https://doi.org/10.5802/pmb.33","url":null,"abstract":"In a section of his 1876 treatise Theorie der Abel'schen Functionen vom Geschlecht 3 Weber proved a formula that expresses the bitangents of a non-singular plane quartic in terms of Riemann theta constants (Thetanullwerte). The present note is devoted to a modern presentation of Weber's formula. In the end a connection with the universal bitangent matrix is also displayed.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"18 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124581808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An Integral Digit Derivative Basis for Carlitz Prime Power Torsion Extensions","authors":"A. Maurischat, R. Perkins","doi":"10.5802/pmb.32","DOIUrl":"https://doi.org/10.5802/pmb.32","url":null,"abstract":"Let $mathfrak{p}$ be a monic irreducible polynomial in $A:=mathbb{F}_q[theta]$, the ring of polynomials in the indeterminate $theta$ over the finite field $mathbb{F}_q$, and let $zeta$ be a root of $mathfrak{p}$ in an algebraic closure of $mathbb{F}_q(theta)$. For each positive integer $n$, let $lambda_n$ be a generator of the $A$-module of Carlitz $mathfrak{p}^n$-torsion. We give a basis for the ring of integers $A[zeta,lambda_n] subset K(zeta, lambda_n)$ over $A[zeta] subset K(zeta)$ which consists of monomials in the hyperderivatives of the Anderson-Thakur function $omega$ evaluated at the roots of $mathfrak{p}$. We also give an explicit field normal basis for these extensions. This builds on (and in some places, simplifies) the work of Angles-Pellarin.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"206 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"123058220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hurwitz–Belyi maps","authors":"D. Roberts","doi":"10.5802/PMB.21","DOIUrl":"https://doi.org/10.5802/PMB.21","url":null,"abstract":"The study of the moduli of covers of the projective line leads to the theory of Hurwitz varieties covering configuration varieties. Certain one-dimensional slices of these coverings are particularly interesting Belyi maps. We present systematic examples of such \"Hurwitz-Belyi maps.\" Our examples illustrate a wide variety of theoretical phenomena and computational techniques.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"2015 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2016-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128595670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"On the sup-norm of SL 3 Hecke–Maass cusp forms","authors":"R. Holowinsky, K. N. G. Ricotta, E. Royer","doi":"10.5802/pmb.36","DOIUrl":"https://doi.org/10.5802/pmb.36","url":null,"abstract":"This work contains a proof of a non-trivial explicit quantitative bound in the eigenvalue aspect for the sup-norm of a SL(3,Z) Hecke-Maass cusp form restricted to a compact set.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"206 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114800578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Action of an endomorphism on (the solutions of) a linear differential equation","authors":"Lucia Di Vizio","doi":"10.5802/pmb.28","DOIUrl":"https://doi.org/10.5802/pmb.28","url":null,"abstract":"—The purpose of this survey is to provide the reader with a user friendly introduction to the two articles [8] and [9], which give a Galoisian description of the action of an endomorphism of a differential field (K, ∂) on the solutions of a linear differential equation defined over (K, ∂). After having introduced the theory, we give some concrete examples. Résumé. — (Action d’un endormorphisme sur (les solutions d’) une équation différentielle linéaire)Le but de ce survol est de présenter d’une façon accessible le contenu des articles [8] et [9], qui donnent une description galoisienne de l’action d’un endomorphisme d’un corps différentiel (K, ∂) sur les solutions d’une équation différentielle linéaire à coefficients dans (K, ∂). Après une présentation de la théorie nous donnons quelques exemples d’applications.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130527433","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. Goss, Bruno Anglès, Tuan Ngo Dac, F. Pellarin, Floric Tavares-Ribeiro
{"title":"The digit principle and derivatives of certain L-series","authors":"D. Goss, Bruno Anglès, Tuan Ngo Dac, F. Pellarin, Floric Tavares-Ribeiro","doi":"10.5802/PMB.30","DOIUrl":"https://doi.org/10.5802/PMB.30","url":null,"abstract":"We discuss a digit principle for derivatives of certain ζ-values in Tate algebras of positive characteristic discovered by David Goss.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132148503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}