{"title":"关于sl3 hecke - mass尖形的上模","authors":"R. Holowinsky, K. N. G. Ricotta, E. Royer","doi":"10.5802/pmb.36","DOIUrl":null,"url":null,"abstract":"This work contains a proof of a non-trivial explicit quantitative bound in the eigenvalue aspect for the sup-norm of a SL(3,Z) Hecke-Maass cusp form restricted to a compact set.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"206 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"On the sup-norm of SL 3 Hecke–Maass cusp forms\",\"authors\":\"R. Holowinsky, K. N. G. Ricotta, E. Royer\",\"doi\":\"10.5802/pmb.36\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work contains a proof of a non-trivial explicit quantitative bound in the eigenvalue aspect for the sup-norm of a SL(3,Z) Hecke-Maass cusp form restricted to a compact set.\",\"PeriodicalId\":194637,\"journal\":{\"name\":\"Publications Mathématiques de Besançon\",\"volume\":\"206 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications Mathématiques de Besançon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5802/pmb.36\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications Mathématiques de Besançon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/pmb.36","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This work contains a proof of a non-trivial explicit quantitative bound in the eigenvalue aspect for the sup-norm of a SL(3,Z) Hecke-Maass cusp form restricted to a compact set.