{"title":"Weber’s formula for the bitangents of a smooth plane quartic","authors":"Alessio Fiorentino","doi":"10.5802/pmb.33","DOIUrl":null,"url":null,"abstract":"In a section of his 1876 treatise Theorie der Abel'schen Functionen vom Geschlecht 3 Weber proved a formula that expresses the bitangents of a non-singular plane quartic in terms of Riemann theta constants (Thetanullwerte). The present note is devoted to a modern presentation of Weber's formula. In the end a connection with the universal bitangent matrix is also displayed.","PeriodicalId":194637,"journal":{"name":"Publications Mathématiques de Besançon","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications Mathématiques de Besançon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5802/pmb.33","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10
Abstract
In a section of his 1876 treatise Theorie der Abel'schen Functionen vom Geschlecht 3 Weber proved a formula that expresses the bitangents of a non-singular plane quartic in terms of Riemann theta constants (Thetanullwerte). The present note is devoted to a modern presentation of Weber's formula. In the end a connection with the universal bitangent matrix is also displayed.