Lizhi Guan, Jingbo Fan, Zhi Kai Ng, Edwin Hang Tong Teo, Hortense Le Ferrand
{"title":"Modulation of the electromagnetic shielding effectiveness through micro/macrostructure design for electronic packaging","authors":"Lizhi Guan, Jingbo Fan, Zhi Kai Ng, Edwin Hang Tong Teo, Hortense Le Ferrand","doi":"10.1038/s41427-024-00554-8","DOIUrl":"https://doi.org/10.1038/s41427-024-00554-8","url":null,"abstract":"<p>Lightweight electronic packaging that provides mechanical protection, cooling ability, and customizable electromagnetic interference (EMI) shielding effectiveness (SE) is needed for next-generation electronics. Although electronic packaging solutions with excellent EMI SE exist, there is limited research on how hierarchical design can modulate the EMI SE of an electronic packaging material on demand. In this study, the deliberate precise micro/macrostructure design of graphite-based materials using magnetically assisted 3D printing allows tuning of the EMI SE in the X band (8–12 GHz), leading to a maximum total shielding performance of 90 dB. Aligning high-density graphite microplatelets during 3D printing also remarkably amplified the total SE by 200%. Subsequently, rationally designing the oriented microstructure within a geometrical shape increases the reflection and improves the EMI SE from 40 to 60 dB in a specific direction. Our proof-of-concept samples demonstrate the potential of precise micro/macrostructure design for customizing and enhancing electronic packaging’s EMI SE while achieving good heat dissipation and mechanical protection using a versatile 3D printing method. These advances pave the way for more reliable and safer electronic systems.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141551337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Yen-Ting Chen, Zi-Xiang Wen, Chen-Fu Lin, Ming-Hsien Li, Peter Chen
{"title":"Inorganic Cs3Bi2I9 lead-free halide perovskite film for large-area X-ray detector via low-cost ambient spray coating","authors":"Yen-Ting Chen, Zi-Xiang Wen, Chen-Fu Lin, Ming-Hsien Li, Peter Chen","doi":"10.1038/s41427-024-00552-w","DOIUrl":"https://doi.org/10.1038/s41427-024-00552-w","url":null,"abstract":"<p>Lead-free Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> single crystals have been demonstrated to be promising materials for direct X-ray detectors with remarkable performance. However, their application for 2D X-ray imaging is hindered by their time-consuming preparation and limited crystal size. In this paper, a thick Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> perovskite film fabricated via facile spray coating at a low processing temperature, which increases the area of the photoactive film, reduces the processing time, decreases the energy budget and the production cost, and enhances the production yield due to high material utilization, has great potential for commercial applications. Careful control of the processing temperature and intervals during spray coating results in a dense and thick perovskite film with well-stacked perovskite domains. The compact perovskite film enhances the charge transport capability of the Cs<sub>3</sub>Bi<sub>2</sub>I<sub>9</sub> perovskite film and reduces the dark current density of the X-ray detector. The resultant X-ray detector, prepared through a two-step spray coating process, exhibited a sensitivity of 127.23 μC Gy<sub>air</sub><sup>−1</sup> cm<sup>−2</sup> and a detection limit of 7.4 μGy<sub>air</sub> s<sup>−1</sup>. In addition, the device delivers long-term stability with a consistent photoresponse when exposed to consecutive X-ray pulse irradiation.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504451","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Science and applications of 2.5D materials: development, opportunities and challenges","authors":"Hiroki Ago, Pablo Solís-Fernández","doi":"10.1038/s41427-024-00551-x","DOIUrl":"https://doi.org/10.1038/s41427-024-00551-x","url":null,"abstract":"<p>Research on two-dimensional (2D) materials has made tremendous progress reflecting their unique properties and promising applications. In this perspective, we review the novel concept of “2.5-dimensional (2.5D) materials”, which represent new opportunities to extend the field of materials science beyond 2D materials. This concept consists of controlling van der Waals interactions and using interlayer nanospaces to synthesize new materials and explore their intriguing properties. It also includes combination with other dimensional materials, the fabrication of three-dimensional (3D) architectures of 2D materials, and practical applications in our 3D everyday life. We discuss recent research based on this concept and provide future perspectives.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504450","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatsuhiro Horii, Kai Yamashita, Marimo Ito, Kei Okada, Toshinori Fujie
{"title":"Ultrathin skin-conformable electrodes with high water vapor permeability and stretchability characteristics composed of single-walled carbon nanotube networks assembled on elastomeric films","authors":"Tatsuhiro Horii, Kai Yamashita, Marimo Ito, Kei Okada, Toshinori Fujie","doi":"10.1038/s41427-024-00553-9","DOIUrl":"https://doi.org/10.1038/s41427-024-00553-9","url":null,"abstract":"<p>Herein, we report on conductive ultrathin films (nanosheets) with the characteristics of stretchability and water vapor permeability for skin-conformable bioelectrodes. The films are fabricated by combining conductive fibrous networks of single-wall carbon nanotubes (SWCNTs) and poly(styrene-<i>b</i>-butadiene-<i>b</i>-styrene) (SBS) nanosheets (i.e., SWCNT-SBS nanosheets). An increase in the number of SWCNT coatings increases both the thicknesses and densities of the SWCNT bundles. The SBS nanosheets coated with three layers of SWCNTs (i.e., SWCNT 3rd-SBS nanosheets) show comparable sheet resistance to the SBS nanosheets coated with poly(3,4-ethylenedioxithiophene) doped with poly(4-styrenesulfonate acid) (PEDOT:PSS) containing 5 wt.% butylene glycol (i.e., PEDOT:PSS/BG5-SBS nanosheets). In addition, the SWCNT 3rd-SBS nanosheets exhibit significantly reduced elastic moduli and increased elongations at break compared to the PEDOT:PSS/BG5-SBS nanosheets. Furthermore, the calculated water vapor transmission ratio of the 210-nm-thick SBS nanosheets (268,172 g m<sup>−2</sup> (2 h)<sup>−1</sup>) is greater than that of the filter paper (6345 g m<sup>−2</sup> (2 h)<sup>−1</sup>). The SWCNT 3rd-SBS nanosheets attached to model skin show high tolerances to bending and artificial sweat at different pH values (i.e., the electrical resistance changes ~1.1 times). Finally, the SWCNT 3rd-SBS nanosheet is applied to detect the surface electromyogram from the forearm of a subject. This nanosheet displays a signal-to-noise ratio similar to that of the PEDOT:PSS/BG5-SBS nanosheet.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141504452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ruma Mandal, Ren Momma, Kazuaki Ishibashi, S. Iihama, Kazuya Suzuki, S. Mizukami
{"title":"Topologically influenced terahertz emission in Co_2MnGa with a large anomalous Hall effect","authors":"Ruma Mandal, Ren Momma, Kazuaki Ishibashi, S. Iihama, Kazuya Suzuki, S. Mizukami","doi":"10.1038/s41427-024-00545-9","DOIUrl":"https://doi.org/10.1038/s41427-024-00545-9","url":null,"abstract":"","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372884","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Akiyasu Yamamoto, Shinnosuke Tokuta, Akimitsu Ishii, A. Yamanaka, Yusuke Shimada, M. Ainslie
{"title":"Superstrength permanent magnets with iron-based superconductors by data- and researcher-driven process design","authors":"Akiyasu Yamamoto, Shinnosuke Tokuta, Akimitsu Ishii, A. Yamanaka, Yusuke Shimada, M. Ainslie","doi":"10.1038/s41427-024-00549-5","DOIUrl":"https://doi.org/10.1038/s41427-024-00549-5","url":null,"abstract":"","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141372890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interfacing exogenous stents with human coronary artery by self-assembled coating: designs, functionalities and applications","authors":"Feng Zhao, Feng Liu, Chenglong Gao, Guoqing Wang, Yinfeng Zhang, Fei Yu, Jiawei Tian, Kai Tan, Runhao Zhang, Kang Liang, Zhexun Lian, Junjie Guo, Biao Kong, Junbo Ge, Hui Xin","doi":"10.1038/s41427-024-00548-6","DOIUrl":"https://doi.org/10.1038/s41427-024-00548-6","url":null,"abstract":"<p>Drug-eluting stents are a commonly used treatment for coronary artery disease. However, the coatings used in drug-eluting stents have some limitations such as poor biocompatibility and drug loading capacity. In recent years, self-assembly methods have emerged as a promising alternative for stent coatings. Self-assembled coatings employ biomaterials and offer several advantages over traditional coatings, including thinner thickness, stronger binding capacity, and better biocompatibility. This review discusses the latest research on self-assembled biomaterial-based coatings for drug-eluting stents. We explore how layer-by-layer coatings and composite coating films have been utilized to load and release drugs with high drug loading capacity and biocompatibility, as well as how they promote endothelial adhesion and growth. Additionally, we examine how self-assembled coatings have been used to release active molecules for anti-coagulation and deliver gene therapy. Moreover, we discuss the potential of self-assembled coatings for future development, including intelligent targeted drug delivery, bionic stent coatings, and 3D printed stent coatings. These advancements have the potential to further improve the effectiveness of drug-eluting stents in treating coronary artery disease.</p>","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141189331","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Angga Dito Fauzi, C. Diao, T. J. Whitcher, Frank Lichtenberg, Ping Yang, M. Breese, A. Rusydi
{"title":"Two distinct charge density waves in the quasi-one-dimensional metal Sr0.95NbO3.37 revealed by resonant soft X-ray scattering","authors":"Angga Dito Fauzi, C. Diao, T. J. Whitcher, Frank Lichtenberg, Ping Yang, M. Breese, A. Rusydi","doi":"10.1038/s41427-024-00547-7","DOIUrl":"https://doi.org/10.1038/s41427-024-00547-7","url":null,"abstract":"","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141101669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"TPU-assisted adhesive PDMS film for dry or underwater environments","authors":"Sangyeun Park, Minhyeok Kim, Hongyun So","doi":"10.1038/s41427-024-00546-8","DOIUrl":"https://doi.org/10.1038/s41427-024-00546-8","url":null,"abstract":"","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":null,"pages":null},"PeriodicalIF":9.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140964838","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}