IF 8.6 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yi-Chen Yang, Soohyun Cho, Tong-Rui Li, Xiang-Qi Liu, Zheng-Tai Liu, Zhi-Cheng Jiang, Jian-Yang Ding, Wei Xia, Zi-Cheng Tao, Jia-Yu Liu, Wen-Chuan Jing, Yu Huang, Yu-Ming Shi, Soonsang Huh, Takeshi Kondo, Zhe Sun, Ji-Shan Liu, Mao Ye, Yi-Lin Wang, Yan-Feng Guo, Da-Wei Shen
{"title":"Unveiling the charge density wave mechanism in vanadium-based Bi-layered kagome metals","authors":"Yi-Chen Yang, Soohyun Cho, Tong-Rui Li, Xiang-Qi Liu, Zheng-Tai Liu, Zhi-Cheng Jiang, Jian-Yang Ding, Wei Xia, Zi-Cheng Tao, Jia-Yu Liu, Wen-Chuan Jing, Yu Huang, Yu-Ming Shi, Soonsang Huh, Takeshi Kondo, Zhe Sun, Ji-Shan Liu, Mao Ye, Yi-Lin Wang, Yan-Feng Guo, Da-Wei Shen","doi":"10.1038/s41427-024-00567-3","DOIUrl":null,"url":null,"abstract":"The charge density wave (CDW), as a hallmark of vanadium-based kagome superconductor AV3Sb5 (A = K, Rb, Cs), has attracted intensive attention. However, the fundamental controversy regarding the underlying mechanism of CDW therein persists. Recently, the vanadium-based bi-layered kagome metal ScV6Sn6, reported to exhibit a long-range charge order below 94 K, has emerged as a promising candidate to further clarify this core issue. Here, employing micro-focusing angle-resolved photoemission spectroscopy (μ-ARPES) and first-principles calculations, we systematically studied the unique CDW order in vanadium-based bi-layered kagome metals by comparing ScV6Sn6 with its isostructural counterpart YV6Sn6, which lacks a CDW ground state. Combining ARPES data and the corresponding joint density of states (DOS), we suggest that the VHS nesting mechanism might be invalid in these materials. Besides, in ScV6Sn6, we identified multiple hybridization energy gaps resulting from CDW-induced band folding, along with an anomalous band dispersion, implying a potential electron-phonon coupling-driven mechanism underlying the formation of the CDW order. Our finding not only comprehensively maps the electronic structure of V-based bi-layer kagome metals but also provides constructive experimental evidence for the unique origin of CDW in this system. We investigated the origins of charge density wave (CDW) mechanisms in the bi-layered kagome metal ScV6Sn6 by comparing its electronic structure with that of its isostructural counterpart YV6Sn6, which does not exhibit a CDW state. Our ARPES measurements reveal that the Van Hove singularity (VHS) nesting mechanism may not be valid in the CDW state. In ScV6Sn6, the electronic structure shows a CDW-induced band gap accompanied by anomalous band dispersion near the M point of the Brillouin zone. These findings provide experimental evidence for the origin of CDW in vanadium-based kagome metals.","PeriodicalId":19382,"journal":{"name":"Npg Asia Materials","volume":"16 1","pages":"1-9"},"PeriodicalIF":8.6000,"publicationDate":"2024-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.com/articles/s41427-024-00567-3.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Npg Asia Materials","FirstCategoryId":"88","ListUrlMain":"https://www.nature.com/articles/s41427-024-00567-3","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

电荷密度波(CDW)作为钒基卡戈米超导体 AV3Sb5(A = K、Rb、Cs)的标志,引起了广泛关注。然而,关于 CDW 的基本机制的基本争议一直存在。最近,据报道在 94 K 以下表现出长程电荷秩序的钒基双层卡戈美金属 ScV6Sn6 成为进一步澄清这一核心问题的有希望的候选者。在这里,我们利用微聚焦角分辨光发射光谱(μ-ARPES)和第一原理计算,通过比较 ScV6Sn6 与缺乏 CDW 基态的同结构对应物 YV6Sn6,系统地研究了钒基双层卡戈米金属中独特的 CDW 秩。结合 ARPES 数据和相应的联合状态密度 (DOS),我们认为 VHS 嵌套机制在这些材料中可能是无效的。此外,在 ScV6Sn6 中,我们还发现了由 CDW 引发的能带折叠所产生的多个杂化能隙,以及异常的能带色散,这意味着 CDW 秩的形成背后可能存在电子-声子耦合驱动机制。我们的发现不仅全面地描绘了 V 基双层卡戈米金属的电子结构,而且还为该体系中电荷波导的独特起源提供了建设性的实验证据。我们通过比较双层可可美金属 ScV6Sn6 与不显示 CDW 状态的同结构对应物 YV6Sn6 的电子结构,研究了电荷密度波(CDW)机制在双层可可美金属 ScV6Sn6 中的起源。我们的 ARPES 测量结果表明,范霍夫奇点(VHS)嵌套机制在 CDW 状态下可能无效。在 ScV6Sn6 中,电子结构显示出一种由 CDW 引发的带隙,并伴随着布里渊区 M 点附近的异常带色散。这些发现为钒基卡戈米金属中 CDW 的起源提供了实验证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the charge density wave mechanism in vanadium-based Bi-layered kagome metals

Unveiling the charge density wave mechanism in vanadium-based Bi-layered kagome metals
The charge density wave (CDW), as a hallmark of vanadium-based kagome superconductor AV3Sb5 (A = K, Rb, Cs), has attracted intensive attention. However, the fundamental controversy regarding the underlying mechanism of CDW therein persists. Recently, the vanadium-based bi-layered kagome metal ScV6Sn6, reported to exhibit a long-range charge order below 94 K, has emerged as a promising candidate to further clarify this core issue. Here, employing micro-focusing angle-resolved photoemission spectroscopy (μ-ARPES) and first-principles calculations, we systematically studied the unique CDW order in vanadium-based bi-layered kagome metals by comparing ScV6Sn6 with its isostructural counterpart YV6Sn6, which lacks a CDW ground state. Combining ARPES data and the corresponding joint density of states (DOS), we suggest that the VHS nesting mechanism might be invalid in these materials. Besides, in ScV6Sn6, we identified multiple hybridization energy gaps resulting from CDW-induced band folding, along with an anomalous band dispersion, implying a potential electron-phonon coupling-driven mechanism underlying the formation of the CDW order. Our finding not only comprehensively maps the electronic structure of V-based bi-layer kagome metals but also provides constructive experimental evidence for the unique origin of CDW in this system. We investigated the origins of charge density wave (CDW) mechanisms in the bi-layered kagome metal ScV6Sn6 by comparing its electronic structure with that of its isostructural counterpart YV6Sn6, which does not exhibit a CDW state. Our ARPES measurements reveal that the Van Hove singularity (VHS) nesting mechanism may not be valid in the CDW state. In ScV6Sn6, the electronic structure shows a CDW-induced band gap accompanied by anomalous band dispersion near the M point of the Brillouin zone. These findings provide experimental evidence for the origin of CDW in vanadium-based kagome metals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Npg Asia Materials
Npg Asia Materials MATERIALS SCIENCE, MULTIDISCIPLINARY-
CiteScore
15.40
自引率
1.00%
发文量
87
审稿时长
2 months
期刊介绍: NPG Asia Materials is an open access, international journal that publishes peer-reviewed review and primary research articles in the field of materials sciences. The journal has a global outlook and reach, with a base in the Asia-Pacific region to reflect the significant and growing output of materials research from this area. The target audience for NPG Asia Materials is scientists and researchers involved in materials research, covering a wide range of disciplines including physical and chemical sciences, biotechnology, and nanotechnology. The journal particularly welcomes high-quality articles from rapidly advancing areas that bridge the gap between materials science and engineering, as well as the classical disciplines of physics, chemistry, and biology. NPG Asia Materials is abstracted/indexed in Journal Citation Reports/Science Edition Web of Knowledge, Google Scholar, Chemical Abstract Services, Scopus, Ulrichsweb (ProQuest), and Scirus.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信