NPJ Systems Biology and Applications最新文献

筛选
英文 中文
Author Correction: Network-driven cancer cell avatars for combination discovery and biomarker identification for DNA damage response inhibitors. 作者更正:网络驱动的癌细胞化身用于 DNA 损伤反应抑制剂的组合发现和生物标志物鉴定。
IF 3.5 2区 生物学
NPJ Systems Biology and Applications Pub Date : 2024-08-08 DOI: 10.1038/s41540-024-00416-7
Orsolya Papp, Viktória Jordán, Szabolcs Hetey, Róbert Balázs, Valér Kaszás, Árpád Bartha, Nóra N Ordasi, Sebestyén Kamp, Bálint Farkas, Jerome Mettetal, Jonathan R Dry, Duncan Young, Ben Sidders, Krishna C Bulusu, Daniel V Veres
{"title":"Author Correction: Network-driven cancer cell avatars for combination discovery and biomarker identification for DNA damage response inhibitors.","authors":"Orsolya Papp, Viktória Jordán, Szabolcs Hetey, Róbert Balázs, Valér Kaszás, Árpád Bartha, Nóra N Ordasi, Sebestyén Kamp, Bálint Farkas, Jerome Mettetal, Jonathan R Dry, Duncan Young, Ben Sidders, Krishna C Bulusu, Daniel V Veres","doi":"10.1038/s41540-024-00416-7","DOIUrl":"10.1038/s41540-024-00416-7","url":null,"abstract":"","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310350/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907244","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modelling HIV-1 control and remission. 模拟 HIV-1 的控制和缓解。
IF 3.5 2区 生物学
NPJ Systems Biology and Applications Pub Date : 2024-08-08 DOI: 10.1038/s41540-024-00407-8
Bharadwaj Vemparala, Shreya Chowdhury, Jérémie Guedj, Narendra M Dixit
{"title":"Modelling HIV-1 control and remission.","authors":"Bharadwaj Vemparala, Shreya Chowdhury, Jérémie Guedj, Narendra M Dixit","doi":"10.1038/s41540-024-00407-8","DOIUrl":"10.1038/s41540-024-00407-8","url":null,"abstract":"<p><p>Remarkable advances are being made in developing interventions for eliciting long-term remission of HIV-1 infection. The success of these interventions will obviate the need for lifelong antiretroviral therapy, the current standard-of-care, and benefit the millions living today with HIV-1. Mathematical modelling has made significant contributions to these efforts. It has helped elucidate the possible mechanistic origins of natural and post-treatment control, deduced potential pathways of the loss of such control, quantified the effects of interventions, and developed frameworks for their rational optimization. Yet, several important questions remain, posing challenges to the translation of these promising interventions. Here, we survey the recent advances in the mathematical modelling of HIV-1 control and remission, highlight their contributions, and discuss potential avenues for future developments.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11310323/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141907245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the salient limitations of the methods of assembly theory and their classification of molecular biosignatures. 关于组装理论及其分子生物特征分类方法的突出局限性。
IF 3.5 2区 生物学
NPJ Systems Biology and Applications Pub Date : 2024-08-07 DOI: 10.1038/s41540-024-00403-y
Abicumaran Uthamacumaran, Felipe S Abrahão, Narsis A Kiani, Hector Zenil
{"title":"On the salient limitations of the methods of assembly theory and their classification of molecular biosignatures.","authors":"Abicumaran Uthamacumaran, Felipe S Abrahão, Narsis A Kiani, Hector Zenil","doi":"10.1038/s41540-024-00403-y","DOIUrl":"10.1038/s41540-024-00403-y","url":null,"abstract":"<p><p>We demonstrate that the assembly pathway method underlying assembly theory (AT) is an encoding scheme widely used by popular statistical compression algorithms. We show that in all cases (synthetic or natural) AT performs similarly to other simple coding schemes and underperforms compared to system-related indexes based upon algorithmic probability that take into account statistical repetitions but also the likelihood of other computable patterns. Our results imply that the assembly index does not offer substantial improvements over existing methods, including traditional statistical ones, and imply that the separation between living and non-living compounds following these methods has been reported before.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11306634/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141902511","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Phenotype prediction using biologically interpretable neural networks on multi-cohort multi-omics data. 在多队列多组学数据上使用生物可解释神经网络进行表型预测。
IF 3.5 2区 生物学
NPJ Systems Biology and Applications Pub Date : 2024-08-02 DOI: 10.1038/s41540-024-00405-w
Arno van Hilten, Jeroen van Rooij, M Arfan Ikram, Wiro J Niessen, Joyce B J van Meurs, Gennady V Roshchupkin
{"title":"Phenotype prediction using biologically interpretable neural networks on multi-cohort multi-omics data.","authors":"Arno van Hilten, Jeroen van Rooij, M Arfan Ikram, Wiro J Niessen, Joyce B J van Meurs, Gennady V Roshchupkin","doi":"10.1038/s41540-024-00405-w","DOIUrl":"10.1038/s41540-024-00405-w","url":null,"abstract":"<p><p>Integrating multi-omics data into predictive models has the potential to enhance accuracy, which is essential for precision medicine. In this study, we developed interpretable predictive models for multi-omics data by employing neural networks informed by prior biological knowledge, referred to as visible networks. These neural networks offer insights into the decision-making process and can unveil novel perspectives on the underlying biological mechanisms associated with traits and complex diseases. We tested the performance, interpretability and generalizability for inferring smoking status, subject age and LDL levels using genome-wide RNA expression and CpG methylation data from the blood of the BIOS consortium (four population cohorts, N<sub>total</sub> = 2940). In a cohort-wise cross-validation setting, the consistency of the diagnostic performance and interpretation was assessed. Performance was consistently high for predicting smoking status with an overall mean AUC of 0.95 (95% CI: 0.90-1.00) and interpretation revealed the involvement of well-replicated genes such as AHRR, GPR15 and LRRN3. LDL-level predictions were only generalized in a single cohort with an R<sup>2</sup> of 0.07 (95% CI: 0.05-0.08). Age was inferred with a mean error of 5.16 (95% CI: 3.97-6.35) years with the genes COL11A2, AFAP1, OTUD7A, PTPRN2, ADARB2 and CD34 consistently predictive. For both regression tasks, we found that using multi-omics networks improved performance, stability and generalizability compared to interpretable single omic networks. We believe that visible neural networks have great potential for multi-omics analysis; they combine multi-omic data elegantly, are interpretable, and generalize well to data from different cohorts.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11297229/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879208","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bifurcations in coupled amyloid-β aggregation-inflammation systems. 淀粉样蛋白-β聚集-炎症耦合系统中的分岔。
IF 3.5 2区 生物学
NPJ Systems Biology and Applications Pub Date : 2024-07-30 DOI: 10.1038/s41540-024-00408-7
Kalyan S Chakrabarti, Davood Bakhtiari, Nasrollah Rezaei-Ghaleh
{"title":"Bifurcations in coupled amyloid-β aggregation-inflammation systems.","authors":"Kalyan S Chakrabarti, Davood Bakhtiari, Nasrollah Rezaei-Ghaleh","doi":"10.1038/s41540-024-00408-7","DOIUrl":"10.1038/s41540-024-00408-7","url":null,"abstract":"<p><p>A complex interplay between various processes underlies the neuropathology of Alzheimer's disease (AD) and its progressive course. Several lines of evidence point to the coupling between Aβ aggregation and neuroinflammation and its role in maintaining brain homeostasis during the long prodromal phase of AD. Little is however known about how this protective mechanism fails and as a result, an irreversible and progressive transition to clinical AD occurs. Here, we introduce a minimal model of a coupled system of Aβ aggregation and inflammation, numerically simulate its dynamical behavior, and analyze its bifurcation properties. The introduced model represents the following events: generation of Aβ monomers, aggregation of Aβ monomers into oligomers and fibrils, induction of inflammation by Aβ aggregates, and clearance of various Aβ species. Crucially, the rates of Aβ generation and clearance are modulated by inflammation level following a Hill-type response function. Despite its relative simplicity, the model exhibits enormously rich dynamics ranging from overdamped kinetics to sustained oscillations. We then specify the region of inflammation- and coupling-related parameters space where a transition to oscillatory dynamics occurs and demonstrate how changes in Aβ aggregation parameters could shift this oscillatory region in parameter space. Our results reveal the propensity of coupled Aβ aggregation-inflammation systems to oscillatory dynamics and propose prolonged sustained oscillations and their consequent immune system exhaustion as a potential mechanism underlying the transition to a more progressive phase of amyloid pathology in AD. The implications of our results in regard to early diagnosis of AD and anti-AD drug development are discussed.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11289389/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A possible path to persistent re-entry waves at the outlet of the left pulmonary vein. 左肺静脉出口处出现持续性再入波的可能途径。
IF 3.5 2区 生物学
NPJ Systems Biology and Applications Pub Date : 2024-07-23 DOI: 10.1038/s41540-024-00406-9
Karoline Horgmo Jæger, Aslak Tveito
{"title":"A possible path to persistent re-entry waves at the outlet of the left pulmonary vein.","authors":"Karoline Horgmo Jæger, Aslak Tveito","doi":"10.1038/s41540-024-00406-9","DOIUrl":"10.1038/s41540-024-00406-9","url":null,"abstract":"<p><p>Atrial fibrillation (AF) is the most common form of cardiac arrhythmia, often evolving from paroxysmal episodes to persistent stages over an extended timeframe. While various factors contribute to this progression, the precise biophysical mechanisms driving it remain unclear. Here we explore how rapid firing of cardiomyocytes at the outlet of the pulmonary vein of the left atria can create a substrate for a persistent re-entry wave. This is grounded in a recently formulated mathematical model of the regulation of calcium ion channel density by intracellular calcium concentration. According to the model, the number of calcium channels is controlled by the intracellular calcium concentration. In particular, if the concentration increases above a certain target level, the calcium current is weakened to restore the target level of calcium. During rapid pacing, the intracellular calcium concentration of the cardiomyocytes increases leading to a substantial reduction of the calcium current across the membrane of the myocytes, which again reduces the action potential duration. In a spatially resolved cell-based model of the outlet of the pulmonary vein of the left atria, we show that the reduced action potential duration can lead to re-entry. Initiated by rapid pacing, often stemming from paroxysmal AF episodes lasting several days, the reduction in calcium current is a critical factor. Our findings illustrate how such episodes can foster a conducive environment for persistent AF through electrical remodeling, characterized by diminished calcium currents. This underscores the importance of promptly addressing early AF episodes to prevent their progression to chronic stages.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11266599/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-consistent signal transduction analysis for modeling context-specific signaling cascades and perturbations. 自洽信号转导分析,用于模拟特定环境下的信号级联和扰动。
IF 3.5 2区 生物学
NPJ Systems Biology and Applications Pub Date : 2024-07-19 DOI: 10.1038/s41540-024-00404-x
John Cole
{"title":"Self-consistent signal transduction analysis for modeling context-specific signaling cascades and perturbations.","authors":"John Cole","doi":"10.1038/s41540-024-00404-x","DOIUrl":"10.1038/s41540-024-00404-x","url":null,"abstract":"<p><p>Biological signal transduction networks are central to information processing and regulation of gene expression across all domains of life. Dysregulation is known to cause a wide array of diseases, including cancers. Here I introduce self-consistent signal transduction analysis, which utilizes genome-scale -omics data (specifically transcriptomics and/or proteomics) in order to predict the flow of information through these networks in an individualized manner. I apply the method to the study of endocrine therapy in breast cancer patients, and show that drugs that inhibit estrogen receptor α elicit a wide array of antitumoral effects, and that their most clinically-impactful ones are through the modulation of proliferative signals that control the genes GREB1, HK1, AKT1, MAPK1, AKT2, and NQO1. This method offers researchers a valuable tool in understanding how and why dysregulation occurs, and how perturbations to the network (such as targeted therapies) effect the network itself, and ultimately patient outcomes.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11271576/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141728521","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Including glutamine in a resource allocation model of energy metabolism in cancer and yeast cells. 将谷氨酰胺纳入癌细胞和酵母细胞能量代谢的资源分配模型。
IF 3.5 2区 生物学
NPJ Systems Biology and Applications Pub Date : 2024-07-18 DOI: 10.1038/s41540-024-00393-x
Jan Ewald, Ziyang He, Wassili Dimitriew, Stefan Schuster
{"title":"Including glutamine in a resource allocation model of energy metabolism in cancer and yeast cells.","authors":"Jan Ewald, Ziyang He, Wassili Dimitriew, Stefan Schuster","doi":"10.1038/s41540-024-00393-x","DOIUrl":"10.1038/s41540-024-00393-x","url":null,"abstract":"<p><p>Energy metabolism is crucial for all living cells, especially during fast growth or stress scenarios. Many cancer and activated immune cells (Warburg effect) or yeasts (Crabtree effect) mostly rely on aerobic glucose fermentation leading to lactate or ethanol, respectively, to generate ATP. In recent years, several mathematical models have been proposed to explain the Warburg effect on theoretical grounds. Besides glucose, glutamine is a very important substrate for eukaryotic cells-not only for biosynthesis, but also for energy metabolism. Here, we present a minimal constraint-based stoichiometric model for explaining both the classical Warburg effect and the experimentally observed respirofermentation of glutamine (WarburQ effect). We consider glucose and glutamine respiration as well as the respective fermentation pathways. Our resource allocation model calculates the ATP production rate, taking into account enzyme masses and, therefore, pathway costs. While our calculation predicts glucose fermentation to be a superior energy-generating pathway in human cells, different enzyme characteristics in yeasts reduce this advantage, in some cases to such an extent that glucose respiration is preferred. The latter is observed for the fungal pathogen Candida albicans, which is a known Crabtree-negative yeast. Further, optimization results show that glutamine is a valuable energy source and important substrate under glucose limitation, in addition to its role as a carbon and nitrogen source of biomass in eukaryotic cells. In conclusion, our model provides insights that glutamine is an underestimated fuel for eukaryotic cells during fast growth and infection scenarios and explains well the observed parallel respirofermentation of glucose and glutamine in several cell types.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11258256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141724077","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A deep position-encoding model for predicting olfactory perception from molecular structures and electrostatics. 从分子结构和静电学预测嗅觉感知的深度位置编码模型。
IF 3.5 2区 生物学
NPJ Systems Biology and Applications Pub Date : 2024-07-17 DOI: 10.1038/s41540-024-00401-0
Mengji Zhang, Yusuke Hiki, Akira Funahashi, Tetsuya J Kobayashi
{"title":"A deep position-encoding model for predicting olfactory perception from molecular structures and electrostatics.","authors":"Mengji Zhang, Yusuke Hiki, Akira Funahashi, Tetsuya J Kobayashi","doi":"10.1038/s41540-024-00401-0","DOIUrl":"10.1038/s41540-024-00401-0","url":null,"abstract":"<p><p>Predicting olfactory perceptions from odorant molecules is challenging due to the complex and potentially discontinuous nature of the perceptual space for smells. In this study, we introduce a deep learning model, Mol-PECO (Molecular Representation by Positional Encoding of Coulomb Matrix), designed to predict olfactory perceptions based on molecular structures and electrostatics. Mol-PECO learns the efficient embedding of molecules by utilizing the Coulomb matrix, which encodes atomic coordinates and charges, as an alternative of the adjacency matrix and its Laplacian eigenfunctions as positional encoding of atoms. With a comprehensive dataset of odor molecules and descriptors, Mol-PECO outperforms traditional machine learning methods using molecular fingerprints and graph neural networks based on adjacency matrices. The learned embeddings by Mol-PECO effectively capture the odor space, enabling global clustering of descriptors and local retrieval of similar odorants. This work contributes to a deeper understanding of the olfactory sense and its mechanisms.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11255234/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Systems modeling of oncogenic G-protein and GPCR signaling reveals unexpected differences in downstream pathway activation. 致癌 G 蛋白和 GPCR 信号的系统建模揭示了下游通路激活中意想不到的差异。
IF 3.5 2区 生物学
NPJ Systems Biology and Applications Pub Date : 2024-07-16 DOI: 10.1038/s41540-024-00400-1
Michael Trogdon, Kodye Abbott, Nadia Arang, Kathryn Lande, Navneet Kaur, Melinda Tong, Mathieu Bakhoum, J Silvio Gutkind, Edward C Stites
{"title":"Systems modeling of oncogenic G-protein and GPCR signaling reveals unexpected differences in downstream pathway activation.","authors":"Michael Trogdon, Kodye Abbott, Nadia Arang, Kathryn Lande, Navneet Kaur, Melinda Tong, Mathieu Bakhoum, J Silvio Gutkind, Edward C Stites","doi":"10.1038/s41540-024-00400-1","DOIUrl":"10.1038/s41540-024-00400-1","url":null,"abstract":"<p><p>Mathematical models of biochemical reaction networks are an important and emerging tool for the study of cell signaling networks involved in disease processes. One promising potential application of such mathematical models is the study of how disease-causing mutations promote the signaling phenotype that contributes to the disease. It is commonly assumed that one must have a thorough characterization of the network readily available for mathematical modeling to be useful, but we hypothesized that mathematical modeling could be useful when there is incomplete knowledge and that it could be a tool for discovery that opens new areas for further exploration. In the present study, we first develop a mechanistic mathematical model of a G-protein coupled receptor signaling network that is mutated in almost all cases of uveal melanoma and use model-driven explorations to uncover and explore multiple new areas for investigating this disease. Modeling the two major, mutually-exclusive, oncogenic mutations (Gα<sub>q/11</sub> and CysLT<sub>2</sub>R) revealed the potential for previously unknown qualitative differences between seemingly interchangeable disease-promoting mutations, and our experiments confirmed oncogenic CysLT<sub>2</sub>R was impaired at activating the FAK/YAP/TAZ pathway relative to Gα<sub>q/11</sub>. This led us to hypothesize that CYSLTR2 mutations in UM must co-occur with other mutations to activate FAK/YAP/TAZ signaling, and our bioinformatic analysis uncovers a role for co-occurring mutations involving the plexin/semaphorin pathway, which has been shown capable of activating this pathway. Overall, this work highlights the power of mechanism-based computational systems biology as a discovery tool that can leverage available information to open new research areas.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":null,"pages":null},"PeriodicalIF":3.5,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11252164/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141627232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信