{"title":"推断物种动态和相互作用的计算框架与微生物群生态学的应用。","authors":"Yuanwei Xu, Georgios V Gkoutos","doi":"10.1038/s41540-025-00568-0","DOIUrl":null,"url":null,"abstract":"<p><p>We present MBPert, a generic computational framework for inferring species interactions and predicting dynamics in time-evolving ecosystems from perturbation and time-series data. In this work, we contextualize the framework in microbial ecosystem modeling by coupling a modified generalized Lotka-Volterra formulation with machine learning optimization. Unlike traditional methods that rely on gradient matching, MBPert leverages numerical solutions of differential equations and iterative parameter estimation to robustly capture microbial dynamics. The framework is assessed within the context of two experimental scenarios: (i) paired before-and-after measurements under targeted perturbations, and (ii) longitudinal time-series data with time-dependent perturbations. Extensive simulation studies, benchmarking on standardized MTIST datasets, and application to Clostridium difficile infection in mice and repeated antibiotic perturbations of human gut micribiota, demonstrate that MBPert accurately recapitulates species interactions and predicts system dynamics. Our results highlight MBPert as a powerful and flexible tool for mechanistic insight into microbiota ecology, with broad potential applicability to other complex dynamical systems.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"87"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325733/pdf/","citationCount":"0","resultStr":"{\"title\":\"A computational framework for inferring species dynamics and interactions with applications in microbiota ecology.\",\"authors\":\"Yuanwei Xu, Georgios V Gkoutos\",\"doi\":\"10.1038/s41540-025-00568-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We present MBPert, a generic computational framework for inferring species interactions and predicting dynamics in time-evolving ecosystems from perturbation and time-series data. In this work, we contextualize the framework in microbial ecosystem modeling by coupling a modified generalized Lotka-Volterra formulation with machine learning optimization. Unlike traditional methods that rely on gradient matching, MBPert leverages numerical solutions of differential equations and iterative parameter estimation to robustly capture microbial dynamics. The framework is assessed within the context of two experimental scenarios: (i) paired before-and-after measurements under targeted perturbations, and (ii) longitudinal time-series data with time-dependent perturbations. Extensive simulation studies, benchmarking on standardized MTIST datasets, and application to Clostridium difficile infection in mice and repeated antibiotic perturbations of human gut micribiota, demonstrate that MBPert accurately recapitulates species interactions and predicts system dynamics. Our results highlight MBPert as a powerful and flexible tool for mechanistic insight into microbiota ecology, with broad potential applicability to other complex dynamical systems.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"87\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12325733/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00568-0\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00568-0","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
A computational framework for inferring species dynamics and interactions with applications in microbiota ecology.
We present MBPert, a generic computational framework for inferring species interactions and predicting dynamics in time-evolving ecosystems from perturbation and time-series data. In this work, we contextualize the framework in microbial ecosystem modeling by coupling a modified generalized Lotka-Volterra formulation with machine learning optimization. Unlike traditional methods that rely on gradient matching, MBPert leverages numerical solutions of differential equations and iterative parameter estimation to robustly capture microbial dynamics. The framework is assessed within the context of two experimental scenarios: (i) paired before-and-after measurements under targeted perturbations, and (ii) longitudinal time-series data with time-dependent perturbations. Extensive simulation studies, benchmarking on standardized MTIST datasets, and application to Clostridium difficile infection in mice and repeated antibiotic perturbations of human gut micribiota, demonstrate that MBPert accurately recapitulates species interactions and predicts system dynamics. Our results highlight MBPert as a powerful and flexible tool for mechanistic insight into microbiota ecology, with broad potential applicability to other complex dynamical systems.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.