{"title":"用于功能分层和大规模表型预测的因果关系感知图神经网络。","authors":"Charalampos P Triantafyllidis, Ricardo Aguas","doi":"10.1038/s41540-025-00567-1","DOIUrl":null,"url":null,"abstract":"<p><p>We employ a computational framework that integrates mathematical programming and Graph Neural Networks (GNNs) to elucidate functional phenotypic heterogeneity in disease by classifying entire pathways under various conditions of interest. Our approach combines two distinct, yet seamlessly integrated, modeling schemes. First, we leverage Prior Knowledge Networks (PKNs) to reconstruct gene networks from genomic and transcriptomic data. We demonstrate how this can be achieved through mathematical programming optimization and provide examples using comprehensive, established databases. We then tailor GNNs to classify each network as a single data point at graph-level, using various node embeddings and edge attributes. These networks may vary in their biological or molecular annotations, which serve as a labeling scheme for their supervised classification. We apply the framework to the human DNA damage and repair pathway using the TP53 regulon in a pancancer study across cell lines and tumor samples to classify Gene Regulatory Networks (GRNs) across different TP53 mutation types. This approach allows us to identify mutations with distinguishable functional profiles that can be related to specific phenotypes, thus providing a data-driven pipeline for genotype-to-phenotype translation. This scalable approach enables the classification of diverse conditions within the multi-factorial nature of diseases and disentangles their polygenic complexity by revealing new functional patterns through a causal representation.</p>","PeriodicalId":19345,"journal":{"name":"NPJ Systems Biology and Applications","volume":"11 1","pages":"92"},"PeriodicalIF":3.5000,"publicationDate":"2025-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343938/pdf/","citationCount":"0","resultStr":"{\"title\":\"Causality-aware graph neural networks for functional stratification and phenotype prediction at scale.\",\"authors\":\"Charalampos P Triantafyllidis, Ricardo Aguas\",\"doi\":\"10.1038/s41540-025-00567-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>We employ a computational framework that integrates mathematical programming and Graph Neural Networks (GNNs) to elucidate functional phenotypic heterogeneity in disease by classifying entire pathways under various conditions of interest. Our approach combines two distinct, yet seamlessly integrated, modeling schemes. First, we leverage Prior Knowledge Networks (PKNs) to reconstruct gene networks from genomic and transcriptomic data. We demonstrate how this can be achieved through mathematical programming optimization and provide examples using comprehensive, established databases. We then tailor GNNs to classify each network as a single data point at graph-level, using various node embeddings and edge attributes. These networks may vary in their biological or molecular annotations, which serve as a labeling scheme for their supervised classification. We apply the framework to the human DNA damage and repair pathway using the TP53 regulon in a pancancer study across cell lines and tumor samples to classify Gene Regulatory Networks (GRNs) across different TP53 mutation types. This approach allows us to identify mutations with distinguishable functional profiles that can be related to specific phenotypes, thus providing a data-driven pipeline for genotype-to-phenotype translation. This scalable approach enables the classification of diverse conditions within the multi-factorial nature of diseases and disentangles their polygenic complexity by revealing new functional patterns through a causal representation.</p>\",\"PeriodicalId\":19345,\"journal\":{\"name\":\"NPJ Systems Biology and Applications\",\"volume\":\"11 1\",\"pages\":\"92\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-08-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12343938/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NPJ Systems Biology and Applications\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1038/s41540-025-00567-1\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NPJ Systems Biology and Applications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41540-025-00567-1","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
Causality-aware graph neural networks for functional stratification and phenotype prediction at scale.
We employ a computational framework that integrates mathematical programming and Graph Neural Networks (GNNs) to elucidate functional phenotypic heterogeneity in disease by classifying entire pathways under various conditions of interest. Our approach combines two distinct, yet seamlessly integrated, modeling schemes. First, we leverage Prior Knowledge Networks (PKNs) to reconstruct gene networks from genomic and transcriptomic data. We demonstrate how this can be achieved through mathematical programming optimization and provide examples using comprehensive, established databases. We then tailor GNNs to classify each network as a single data point at graph-level, using various node embeddings and edge attributes. These networks may vary in their biological or molecular annotations, which serve as a labeling scheme for their supervised classification. We apply the framework to the human DNA damage and repair pathway using the TP53 regulon in a pancancer study across cell lines and tumor samples to classify Gene Regulatory Networks (GRNs) across different TP53 mutation types. This approach allows us to identify mutations with distinguishable functional profiles that can be related to specific phenotypes, thus providing a data-driven pipeline for genotype-to-phenotype translation. This scalable approach enables the classification of diverse conditions within the multi-factorial nature of diseases and disentangles their polygenic complexity by revealing new functional patterns through a causal representation.
期刊介绍:
npj Systems Biology and Applications is an online Open Access journal dedicated to publishing the premier research that takes a systems-oriented approach. The journal aims to provide a forum for the presentation of articles that help define this nascent field, as well as those that apply the advances to wider fields. We encourage studies that integrate, or aid the integration of, data, analyses and insight from molecules to organisms and broader systems. Important areas of interest include not only fundamental biological systems and drug discovery, but also applications to health, medical practice and implementation, big data, biotechnology, food science, human behaviour, broader biological systems and industrial applications of systems biology.
We encourage all approaches, including network biology, application of control theory to biological systems, computational modelling and analysis, comprehensive and/or high-content measurements, theoretical, analytical and computational studies of system-level properties of biological systems and computational/software/data platforms enabling such studies.