Neuroscience bulletin最新文献

筛选
英文 中文
Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network. 特异性和可塑性:塑造皮层功能网络中的吊灯细胞与轴突起始节段连接
IF 5.9 2区 医学
Neuroscience bulletin Pub Date : 2024-07-30 DOI: 10.1007/s12264-024-01266-3
Yanqing Qi, Rui Zhao, Jifeng Tian, Jiangteng Lu, Miao He, Yilin Tai
{"title":"Specific and Plastic: Chandelier Cell-to-Axon Initial Segment Connections in Shaping Functional Cortical Network.","authors":"Yanqing Qi, Rui Zhao, Jifeng Tian, Jiangteng Lu, Miao He, Yilin Tai","doi":"10.1007/s12264-024-01266-3","DOIUrl":"https://doi.org/10.1007/s12264-024-01266-3","url":null,"abstract":"<p><p>Axon initial segment (AIS) is the most excitable subcellular domain of a neuron for action potential initiation. AISs of cortical projection neurons (PNs) receive GABAergic synaptic inputs primarily from chandelier cells (ChCs), which are believed to regulate action potential generation and modulate neuronal excitability. As individual ChCs often innervate hundreds of PNs, they may alter the activity of PN ensembles and even impact the entire neural network. During postnatal development or in response to changes in network activity, the AISs and axo-axonic synapses undergo dynamic structural and functional changes that underlie the wiring, refinement, and adaptation of cortical microcircuits. Here we briefly introduce the history of ChCs and review recent research advances employing modern genetic and molecular tools. Special attention will be attributed to the plasticity of the AIS and the ChC-PN connections, which play a pivotal role in shaping the dynamic network under both physiological and pathological conditions.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury. 星形胶质细胞从生理学到病理学:突显其作为中枢神经系统损伤治疗靶点的潜力。
IF 5.9 2区 医学
Neuroscience bulletin Pub Date : 2024-07-30 DOI: 10.1007/s12264-024-01258-3
Yimin Yuan, Hong Liu, Ziwei Dai, Cheng He, Shangyao Qin, Zhida Su
{"title":"From Physiology to Pathology of Astrocytes: Highlighting Their Potential as Therapeutic Targets for CNS Injury.","authors":"Yimin Yuan, Hong Liu, Ziwei Dai, Cheng He, Shangyao Qin, Zhida Su","doi":"10.1007/s12264-024-01258-3","DOIUrl":"https://doi.org/10.1007/s12264-024-01258-3","url":null,"abstract":"<p><p>In the mammalian central nervous system (CNS), astrocytes are the ubiquitous glial cells that have complex morphological and molecular characteristics. These fascinating cells play essential neurosupportive and homeostatic roles in the healthy CNS and undergo morphological, molecular, and functional changes to adopt so-called 'reactive' states in response to CNS injury or disease. In recent years, interest in astrocyte research has increased dramatically and some new biological features and roles of astrocytes in physiological and pathological conditions have been discovered thanks to technological advances. Here, we will review and discuss the well-established and emerging astroglial biology and functions, with emphasis on their potential as therapeutic targets for CNS injury, including traumatic and ischemic injury. This review article will highlight the importance of astrocytes in the neuropathological process and repair of CNS injury.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141856105","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurotransmitter Switching: A Novel Mechanism for Fear Generalization. 神经递质转换:恐惧泛化的新机制
IF 5.9 2区 医学
Neuroscience bulletin Pub Date : 2024-07-29 DOI: 10.1007/s12264-024-01264-5
Jiayuan Zheng, Zhanzhuang Tian
{"title":"Neurotransmitter Switching: A Novel Mechanism for Fear Generalization.","authors":"Jiayuan Zheng, Zhanzhuang Tian","doi":"10.1007/s12264-024-01264-5","DOIUrl":"https://doi.org/10.1007/s12264-024-01264-5","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Distinct Contributions of Alpha and Beta Oscillations to Context-Dependent Visual Size Perception. 阿尔法和贝塔振荡对上下文相关的视觉大小感知的不同贡献
IF 5.9 2区 医学
Neuroscience bulletin Pub Date : 2024-07-29 DOI: 10.1007/s12264-024-01257-4
Lihong Chen, Yi Jiang
{"title":"Distinct Contributions of Alpha and Beta Oscillations to Context-Dependent Visual Size Perception.","authors":"Lihong Chen, Yi Jiang","doi":"10.1007/s12264-024-01257-4","DOIUrl":"https://doi.org/10.1007/s12264-024-01257-4","url":null,"abstract":"<p><p>Previous studies have proposed two cognitive mechanisms responsible for the Ebbinghaus illusion effect, i.e., contour interaction and size contrast. However, the neural underpinnings of these two mechanisms are largely unexplored. The present study introduced binocular depth to the Ebbinghaus illusion configuration and made the central target appear either in front of or behind the surrounding inducers in order to disturb size contrast instead of contour interaction. The results showed that the illusion effect, though persisted, was significantly reduced under the binocular depth conditions. Notably, the target with a larger perceived size reduced early alpha-band power (8-13 Hz, 0-100 ms after stimulus onset) at centroparietal sites irrespective of the relative depth of the target and the inducers, with the parietal alpha power negatively correlated with the illusion effect. Moreover, the target with a larger perceived size increased the occipito-parietal beta-band power (14-25 Hz, 200-300 ms after stimulus onset) under the no-depth condition, and the beta power was positively correlated with the illusion effect when the depth conditions were subtracted from the no-depth condition. The findings provided neurophysiological evidence in favor of the two cognitive mechanisms of the Ebbinghaus illusion by revealing that early alpha power is associated with low-level contour interaction and late beta power is linked to high-level size contrast, supporting the claim that neural oscillations at distinct frequency bands dynamically support different aspects of visual processing.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141792915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neural Basis of Categorical Representations of Animal Body Silhouettes. 动物身体轮廓分类表征的神经基础
IF 5.9 2区 医学
Neuroscience bulletin Pub Date : 2024-07-26 DOI: 10.1007/s12264-024-01268-1
Yue Pu, Shihui Han
{"title":"Neural Basis of Categorical Representations of Animal Body Silhouettes.","authors":"Yue Pu, Shihui Han","doi":"10.1007/s12264-024-01268-1","DOIUrl":"https://doi.org/10.1007/s12264-024-01268-1","url":null,"abstract":"<p><p>Neural activities differentiating bodies versus non-body stimuli have been identified in the occipitotemporal cortex of both humans and nonhuman primates. However, the neural mechanisms of coding the similarity of different individuals' bodies of the same species to support their categorical representations remain unclear. Using electroencephalography (EEG) and magnetoencephalography (MEG), we investigated the temporal and spatial characteristics of neural processes shared by different individual body silhouettes of the same species by quantifying the repetition suppression of neural responses to human and animal (chimpanzee, dog, and bird) body silhouettes showing different postures. Our EEG results revealed significant repetition suppression of the amplitudes of early frontal/central activity at 180-220 ms (P2) and late occipitoparietal activity at 220-320 ms (P270) in response to animal (but not human) body silhouettes of the same species. Our MEG results further localized the repetition suppression effect related to animal body silhouettes in the left supramarginal gyrus and left frontal cortex at 200-440 ms after stimulus onset. Our findings suggest two neural processes that are involved in spontaneous categorical representations of animal body silhouettes as a cognitive basis of human-animal interactions.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766890","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurotensin Modulates Emotional Valence Assignment in the Basolateral Amygdala Through Neuromodulator Gain. 神经紧张素通过神经调节剂增益调节杏仁核基底外侧的情绪价值分配
IF 5.9 2区 医学
Neuroscience bulletin Pub Date : 2024-07-26 DOI: 10.1007/s12264-024-01269-0
Maimaitishalijiang Abudureheman, Yu-Hao Xiao, Li-Zang Zeng, Hong-Yan Geng
{"title":"Neurotensin Modulates Emotional Valence Assignment in the Basolateral Amygdala Through Neuromodulator Gain.","authors":"Maimaitishalijiang Abudureheman, Yu-Hao Xiao, Li-Zang Zeng, Hong-Yan Geng","doi":"10.1007/s12264-024-01269-0","DOIUrl":"https://doi.org/10.1007/s12264-024-01269-0","url":null,"abstract":"","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141766891","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cortical Morphological Networks Differ Between Gyri and Sulci. 神经节和脑室的皮层形态网络存在差异
IF 5.9 2区 医学
Neuroscience bulletin Pub Date : 2024-07-23 DOI: 10.1007/s12264-024-01262-7
Qingchun Lin, Suhui Jin, Guole Yin, Junle Li, Umer Asgher, Shijun Qiu, Jinhui Wang
{"title":"Cortical Morphological Networks Differ Between Gyri and Sulci.","authors":"Qingchun Lin, Suhui Jin, Guole Yin, Junle Li, Umer Asgher, Shijun Qiu, Jinhui Wang","doi":"10.1007/s12264-024-01262-7","DOIUrl":"https://doi.org/10.1007/s12264-024-01262-7","url":null,"abstract":"<p><p>This study explored how the human cortical folding pattern composed of convex gyri and concave sulci affected single-subject morphological brain networks, which are becoming an important method for studying the human brain connectome. We found that gyri-gyri networks exhibited higher morphological similarity, lower small-world parameters, and lower long-term test-retest reliability than sulci-sulci networks for cortical thickness- and gyrification index-based networks, while opposite patterns were observed for fractal dimension-based networks. Further behavioral association analysis revealed that gyri-gyri networks and connections between gyral and sulcal regions significantly explained inter-individual variance in Cognition and Motor domains for fractal dimension- and sulcal depth-based networks. Finally, the clinical application showed that only sulci-sulci networks exhibited morphological similarity reductions in major depressive disorder for cortical thickness-, fractal dimension-, and gyrification index-based networks. Taken together, these findings provide novel insights into the constraint of the cortical folding pattern to the network organization of the human brain.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752274","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Principle of Cortical Development and Evolution. 皮质发育和进化原理
IF 5.9 2区 医学
Neuroscience bulletin Pub Date : 2024-07-18 DOI: 10.1007/s12264-024-01259-2
Zhengang Yang
{"title":"The Principle of Cortical Development and Evolution.","authors":"Zhengang Yang","doi":"10.1007/s12264-024-01259-2","DOIUrl":"10.1007/s12264-024-01259-2","url":null,"abstract":"<p><p>Human's robust cognitive abilities, including creativity and language, are made possible, at least in large part, by evolutionary changes made to the cerebral cortex. This paper reviews the biology and evolution of mammalian cortical radial glial cells (primary neural stem cells) and introduces the concept that a genetically step wise process, based on a core molecular pathway already in use, is the evolutionary process that has molded cortical neurogenesis. The core mechanism, which has been identified in our recent studies, is the extracellular signal-regulated kinase (ERK)-bone morphogenic protein 7 (BMP7)-GLI3 repressor form (GLI3R)-sonic hedgehog (SHH) positive feedback loop. Additionally, I propose that the molecular basis for cortical evolutionary dwarfism, exemplified by the lissencephalic mouse which originated from a larger gyrencephalic ancestor, is an increase in SHH signaling in radial glia, that antagonizes ERK-BMP7 signaling. Finally, I propose that: (1) SHH signaling is not a key regulator of primate cortical expansion and folding; (2) human cortical radial glial cells do not generate neocortical interneurons; (3) human-specific genes may not be essential for most cortical expansion. I hope this review assists colleagues in the field, guiding research to address gaps in our understanding of cortical development and evolution.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141634122","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nucleus Accumbens Corticotropin-Releasing Hormone Neurons Projecting to the Bed Nucleus of the Stria Terminalis Promote Wakefulness and Positive Affective State. 投射到椎体末端床核的大脑皮质促肾上腺皮质激素释放激素神经元促进清醒和积极情绪状态
IF 5.9 2区 医学
Neuroscience bulletin Pub Date : 2024-07-09 DOI: 10.1007/s12264-024-01233-y
Gaojie Pan, Bing Zhao, Mutian Zhang, Yanan Guo, Yuhua Yan, Dan Dai, Xiaoxi Zhang, Hui Yang, Jinfei Ni, Zhili Huang, Xia Li, Shumin Duan
{"title":"Nucleus Accumbens Corticotropin-Releasing Hormone Neurons Projecting to the Bed Nucleus of the Stria Terminalis Promote Wakefulness and Positive Affective State.","authors":"Gaojie Pan, Bing Zhao, Mutian Zhang, Yanan Guo, Yuhua Yan, Dan Dai, Xiaoxi Zhang, Hui Yang, Jinfei Ni, Zhili Huang, Xia Li, Shumin Duan","doi":"10.1007/s12264-024-01233-y","DOIUrl":"https://doi.org/10.1007/s12264-024-01233-y","url":null,"abstract":"<p><p>The nucleus accumbens (NAc) plays an important role in various emotional and motivational behaviors that rely on heightened wakefulness. However, the neural mechanisms underlying the relationship between arousal and emotion regulation in NAc remain unclear. Here, we investigated the roles of a specific subset of inhibitory corticotropin-releasing hormone neurons in the NAc (NAc<sup>CRH</sup>) in regulating arousal and emotional behaviors in mice. We found an increased activity of NAc<sup>CRH</sup> neurons during wakefulness and rewarding stimulation. Activation of NAc<sup>CRH</sup> neurons converts NREM or REM sleep to wakefulness, while inhibition of these neurons attenuates wakefulness. Remarkably, activation of NAc<sup>CRH</sup> neurons induces a place preference response (PPR) and decreased basal anxiety level, whereas their inactivation induces a place aversion response and anxious state. NAc<sup>CRH</sup> neurons are identified as the major NAc projection neurons to the bed nucleus of the stria terminalis (BNST). Furthermore, activation of the NAc<sup>CRH</sup>-BNST pathway similarly induced wakefulness and positive emotional behaviors. Taken together, we identified a basal forebrain CRH pathway that promotes the arousal associated with positive affective states.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141559354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models. 从基因到电路的强迫症神经生物学:动物模型的启示
IF 5.9 2区 医学
Neuroscience bulletin Pub Date : 2024-07-09 DOI: 10.1007/s12264-024-01252-9
Ying-Dan Zhang, Dong-Dong Shi, Zhen Wang
{"title":"Neurobiology of Obsessive-Compulsive Disorder from Genes to Circuits: Insights from Animal Models.","authors":"Ying-Dan Zhang, Dong-Dong Shi, Zhen Wang","doi":"10.1007/s12264-024-01252-9","DOIUrl":"https://doi.org/10.1007/s12264-024-01252-9","url":null,"abstract":"<p><p>Obsessive-compulsive disorder (OCD) is a chronic, severe psychiatric disorder that has been ranked by the World Health Organization as one of the leading causes of illness-related disability, and first-line interventions are limited in efficacy and have side-effect issues. However, the exact pathophysiology underlying this complex, heterogeneous disorder remains unknown. This scenario is now rapidly changing due to the advancement of powerful technologies that can be used to verify the function of the specific gene and dissect the neural circuits underlying the neurobiology of OCD in rodents. Genetic and circuit-specific manipulation in rodents has provided important insights into the neurobiology of OCD by identifying the molecular, cellular, and circuit events that induce OCD-like behaviors. This review will highlight recent progress specifically toward classic genetic animal models and advanced neural circuit findings, which provide theoretical evidence for targeted intervention on specific molecular, cellular, and neural circuit events.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9,"publicationDate":"2024-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141563946","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信