HOCPCA通过与CaMKIIα结合,调节实验性青光眼的氧化应激和神经炎症,对视网膜神经节细胞具有神经保护作用。

IF 5.9 2区 医学 Q1 NEUROSCIENCES
Panpan Li, Xin Shi, Hanhan Liu, Yuan Feng, Xiaosha Wang, Marc Herb, Haichao Ji, Stefan Wagner, Johannes Vogt, Verena Prokosch
{"title":"HOCPCA通过与CaMKIIα结合,调节实验性青光眼的氧化应激和神经炎症,对视网膜神经节细胞具有神经保护作用。","authors":"Panpan Li, Xin Shi, Hanhan Liu, Yuan Feng, Xiaosha Wang, Marc Herb, Haichao Ji, Stefan Wagner, Johannes Vogt, Verena Prokosch","doi":"10.1007/s12264-025-01417-0","DOIUrl":null,"url":null,"abstract":"<p><p>Neuronal injury in glaucoma persists despite effective intraocular pressure (IOP) control, necessitating neuroprotective strategies for retinal ganglion cells (RGCs). In this study, we investigated the neuroprotective role of the γ-hydroxybutyrate analog HOCPCA in a glaucoma model, focusing on its effects on CaMKII signaling, oxidative stress, and neuroinflammatory responses. Retinal tissue from high IOP animal models was analyzed via proteomics. In vitro mouse retinal explants were subjected to elevated pressure and oxidative stress, followed by HOCPCA treatment. HOCPCA significantly mitigated the RGC loss induced by oxidative stress and elevated pressure, preserving neuronal function. It restored CaMKIIα and β levels, preserving RGC integrity, while also modulating oxidative stress and neuroinflammatory responses. These findings suggest that HOCPCA, through its interaction with CaMKII, holds promise as a neuroprotective therapy for glaucoma.</p>","PeriodicalId":19314,"journal":{"name":"Neuroscience bulletin","volume":" ","pages":""},"PeriodicalIF":5.9000,"publicationDate":"2025-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"HOCPCA Exerts Neuroprotection on Retinal Ganglion Cells by Binding to CaMKIIα and Modulating Oxidative Stress and Neuroinflammation in Experimental Glaucoma.\",\"authors\":\"Panpan Li, Xin Shi, Hanhan Liu, Yuan Feng, Xiaosha Wang, Marc Herb, Haichao Ji, Stefan Wagner, Johannes Vogt, Verena Prokosch\",\"doi\":\"10.1007/s12264-025-01417-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuronal injury in glaucoma persists despite effective intraocular pressure (IOP) control, necessitating neuroprotective strategies for retinal ganglion cells (RGCs). In this study, we investigated the neuroprotective role of the γ-hydroxybutyrate analog HOCPCA in a glaucoma model, focusing on its effects on CaMKII signaling, oxidative stress, and neuroinflammatory responses. Retinal tissue from high IOP animal models was analyzed via proteomics. In vitro mouse retinal explants were subjected to elevated pressure and oxidative stress, followed by HOCPCA treatment. HOCPCA significantly mitigated the RGC loss induced by oxidative stress and elevated pressure, preserving neuronal function. It restored CaMKIIα and β levels, preserving RGC integrity, while also modulating oxidative stress and neuroinflammatory responses. These findings suggest that HOCPCA, through its interaction with CaMKII, holds promise as a neuroprotective therapy for glaucoma.</p>\",\"PeriodicalId\":19314,\"journal\":{\"name\":\"Neuroscience bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2025-06-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Neuroscience bulletin\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12264-025-01417-0\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience bulletin","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12264-025-01417-0","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

尽管有效控制眼压(IOP),但青光眼的神经损伤仍然存在,因此需要视网膜神经节细胞(RGCs)的神经保护策略。在本研究中,我们研究了γ-羟基丁酸类似物HOCPCA在青光眼模型中的神经保护作用,重点研究了其对CaMKII信号、氧化应激和神经炎症反应的影响。通过蛋白质组学分析高眼压动物模型视网膜组织。体外小鼠视网膜外植体承受升高的压力和氧化应激,然后进行HOCPCA处理。HOCPCA可显著减轻氧化应激和压力升高引起的RGC损伤,保护神经元功能。它恢复了CaMKIIα和β水平,保持了RGC的完整性,同时也调节了氧化应激和神经炎症反应。这些发现表明,HOCPCA通过与CaMKII的相互作用,有望成为青光眼的神经保护疗法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
HOCPCA Exerts Neuroprotection on Retinal Ganglion Cells by Binding to CaMKIIα and Modulating Oxidative Stress and Neuroinflammation in Experimental Glaucoma.

Neuronal injury in glaucoma persists despite effective intraocular pressure (IOP) control, necessitating neuroprotective strategies for retinal ganglion cells (RGCs). In this study, we investigated the neuroprotective role of the γ-hydroxybutyrate analog HOCPCA in a glaucoma model, focusing on its effects on CaMKII signaling, oxidative stress, and neuroinflammatory responses. Retinal tissue from high IOP animal models was analyzed via proteomics. In vitro mouse retinal explants were subjected to elevated pressure and oxidative stress, followed by HOCPCA treatment. HOCPCA significantly mitigated the RGC loss induced by oxidative stress and elevated pressure, preserving neuronal function. It restored CaMKIIα and β levels, preserving RGC integrity, while also modulating oxidative stress and neuroinflammatory responses. These findings suggest that HOCPCA, through its interaction with CaMKII, holds promise as a neuroprotective therapy for glaucoma.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Neuroscience bulletin
Neuroscience bulletin NEUROSCIENCES-
CiteScore
7.20
自引率
16.10%
发文量
163
审稿时长
6-12 weeks
期刊介绍: Neuroscience Bulletin (NB), the official journal of the Chinese Neuroscience Society, is published monthly by Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS) and Springer. NB aims to publish research advances in the field of neuroscience and promote exchange of scientific ideas within the community. The journal publishes original papers on various topics in neuroscience and focuses on potential disease implications on the nervous system. NB welcomes research contributions on molecular, cellular, or developmental neuroscience using multidisciplinary approaches and functional strategies. We feature full-length original articles, reviews, methods, letters to the editor, insights, and research highlights. As the official journal of the Chinese Neuroscience Society, which currently has more than 12,000 members in China, NB is devoted to facilitating communications between Chinese neuroscientists and their international colleagues. The journal is recognized as the most influential publication in neuroscience research in China.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信