NMR in Biomedicine最新文献

筛选
英文 中文
MRI denoising with a non-blind deep complex-valued convolutional neural network. 利用非盲目深度复值卷积神经网络进行磁共振成像去噪。
IF 2.7 4区 医学
NMR in Biomedicine Pub Date : 2025-01-01 Epub Date: 2024-11-11 DOI: 10.1002/nbm.5291
Quan Dou, Zhixing Wang, Xue Feng, Adrienne E Campbell-Washburn, John P Mugler, Craig H Meyer
{"title":"MRI denoising with a non-blind deep complex-valued convolutional neural network.","authors":"Quan Dou, Zhixing Wang, Xue Feng, Adrienne E Campbell-Washburn, John P Mugler, Craig H Meyer","doi":"10.1002/nbm.5291","DOIUrl":"10.1002/nbm.5291","url":null,"abstract":"<p><p>MR images with high signal-to-noise ratio (SNR) provide more diagnostic information. Various methods for MRI denoising have been developed, but the majority of them operate on the magnitude image and neglect the phase information. Therefore, the goal of this work is to design and implement a complex-valued convolutional neural network (CNN) for MRI denoising. A complex-valued CNN incorporating the noise level map (non-blind <math> <semantics><mrow><mi>ℂ</mi></mrow> <annotation>$$ mathbb{C} $$</annotation></semantics> </math> DnCNN) was trained with ground truth and simulated noise-corrupted image pairs. The proposed method was validated using both simulated and in vivo data collected from low-field scanners. Its denoising performance was quantitively and qualitatively evaluated, and it was compared with the real-valued CNN and several other algorithms. For the simulated noise-corrupted testing dataset, the complex-valued models had superior normalized root-mean-square error, peak SNR, structural similarity index, and phase ABSD. By incorporating the noise level map, the non-blind <math> <semantics><mrow><mi>ℂ</mi></mrow> <annotation>$$ mathbb{C} $$</annotation></semantics> </math> DnCNN showed better performance in dealing with spatially varying parallel imaging noise. For in vivo low-field data, the non-blind <math> <semantics><mrow><mi>ℂ</mi></mrow> <annotation>$$ mathbb{C} $$</annotation></semantics> </math> DnCNN significantly improved the SNR and visual quality of the image. The proposed non-blind <math> <semantics><mrow><mi>ℂ</mi></mrow> <annotation>$$ mathbb{C} $$</annotation></semantics> </math> DnCNN provides an efficient and effective approach for MRI denoising. This is the first application of non-blind <math> <semantics><mrow><mi>ℂ</mi></mrow> <annotation>$$ mathbb{C} $$</annotation></semantics> </math> DnCNN to medical imaging. The method holds the potential to enable improved low-field MRI, facilitating enhanced diagnostic imaging in under-resourced areas.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5291"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605166/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142624739","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A signal model for fat-suppressed T1-mapping and dynamic contrast-enhanced MRI with interrupted spoiled gradient-echo readout. 采用间断破坏梯度回波读取的脂肪抑制 T1 映射和动态对比增强磁共振成像的信号模型。
IF 2.7 4区 医学
NMR in Biomedicine Pub Date : 2025-01-01 Epub Date: 2024-11-21 DOI: 10.1002/nbm.5289
Myrte Wennen, Wilhelm Stehling, J Tim Marcus, Joost P A Kuijer, Cristina Lavini, Leo M A Heunks, Gustav J Strijkers, Bram F Coolen, Aart J Nederveen, Oliver J Gurney-Champion
{"title":"A signal model for fat-suppressed T<sub>1</sub>-mapping and dynamic contrast-enhanced MRI with interrupted spoiled gradient-echo readout.","authors":"Myrte Wennen, Wilhelm Stehling, J Tim Marcus, Joost P A Kuijer, Cristina Lavini, Leo M A Heunks, Gustav J Strijkers, Bram F Coolen, Aart J Nederveen, Oliver J Gurney-Champion","doi":"10.1002/nbm.5289","DOIUrl":"10.1002/nbm.5289","url":null,"abstract":"<p><p>The conventional gradient-echo steady-state signal model is the basis of various spoiled gradient-echo (SPGR) based quantitative MRI models, including variable flip angle (VFA) MRI and dynamic contrast-enhanced MRI (DCE). However, including preparation pulses, such as fat suppression or saturation bands, disrupts the steady-state and leads to a bias in T<sub>1</sub> and DCE parameter estimates. This work introduces a signal model that improves the accuracy of VFA T<sub>1</sub>-mapping and DCE for interrupted spoiled gradient-echo (I-SPGR) acquisitions. The proposed model was applied to a VFA T<sub>1</sub>-mapping I-SPGR sequence in the Gold Standard T<sub>1</sub>-phantom (3 T), in the brain of four healthy volunteers (3 T), and to an abdominal DCE examination (1.5 T). T<sub>1</sub>-values obtained with the proposed and conventional model were compared to reference T<sub>1</sub>-values. Bland-Altman analysis (phantom) and analysis of variance (in vivo) were used to test whether bias from both methods was significantly different (p = 0.05). The proposed model outperformed the conventional model by decreasing the bias in the phantom with respect to the phantom reference values (mean bias -2 vs. -35% at 3 T) and in vivo with respect to the conventional SPGR (-6 vs. -37% bias in T<sub>1</sub>, p < 0.01). The proposed signal model estimated approximately 48% (depending on baseline T<sub>1</sub>) higher contrast concentrations in vivo, which resulted in decreased DCE pharmacokinetic parameter estimates of up to 35%. The proposed signal model improves the accuracy of quantitative parameter estimation from disrupted steady-state I-SPGR sequences. It therefore provides a flexible method for applying fat suppression, saturation bands, and other preparation pulses in VFA T<sub>1</sub>-mapping and DCE.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5289"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11617136/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142687567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-resolution perfusion imaging in rodents using pCASL at 9.4 T. 在 9.4 T 下使用 pCASL 对啮齿动物进行高分辨率灌注成像。
IF 2.7 4区 医学
NMR in Biomedicine Pub Date : 2025-01-01 Epub Date: 2024-11-07 DOI: 10.1002/nbm.5288
Sara Pires Monteiro, Lydiane Hirschler, Emmanuel L Barbier, Patricia Figueiredo, Noam Shemesh
{"title":"High-resolution perfusion imaging in rodents using pCASL at 9.4 T.","authors":"Sara Pires Monteiro, Lydiane Hirschler, Emmanuel L Barbier, Patricia Figueiredo, Noam Shemesh","doi":"10.1002/nbm.5288","DOIUrl":"10.1002/nbm.5288","url":null,"abstract":"<p><p>Adequate perfusion is critical for maintaining normal brain function and aberrations thereof are hallmarks of many diseases. Pseudo-Continuous Arterial Spin Labeling (pCASL) MRI enables noninvasive quantitative perfusion mapping without contrast agent injection and with a higher signal-to-noise ratio (SNR) than alternative methods. Despite its great potential, pCASL remains challenging, unstable, and relatively low-resolution in rodents - especially in mice - thereby limiting the investigation of perfusion properties in many transgenic or other relevant rodent models of disease. Here, we address this gap by developing a novel experimental setup for high-resolution pCASL imaging in mice and combining it with the enhanced SNR of cryogenic probes. We show that our new experimental setup allows for optimal positioning of the carotids within the cryogenic coil, rendering labeling reproducible. With the proposed methodology, we managed to increase the spatial resolution of pCASL perfusion images by a factor of 15 in mice; a factor of 6 in rats is gained compared to the state of the art just by virtue of the cryogenic coil. We also show that the improved pCASL perfusion imaging allows much better delineation of specific brain areas, both in healthy animals as well as in rat and mouse models of stroke. Our results bode well for future high-definition pCASL perfusion imaging in rodents.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5288"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11605498/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142604040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multinuclear MRI Can Depict Metabolic and Energetic Changes in Mild Traumatic Brain Injury. 多核磁共振成像可描绘轻度脑外伤的代谢和能量变化
IF 2.7 4区 医学
NMR in Biomedicine Pub Date : 2025-01-01 DOI: 10.1002/nbm.5306
Thomas M Thorsen, Nikolaj Bøgh, Lotte B Bertelsen, Esben S S Hansen, Christoffer Laustsen
{"title":"Multinuclear MRI Can Depict Metabolic and Energetic Changes in Mild Traumatic Brain Injury.","authors":"Thomas M Thorsen, Nikolaj Bøgh, Lotte B Bertelsen, Esben S S Hansen, Christoffer Laustsen","doi":"10.1002/nbm.5306","DOIUrl":"10.1002/nbm.5306","url":null,"abstract":"<p><p>Mild traumatic brain injuries (TBIs) are frequent in the European population. The pathophysiological changes after TBI include metabolic changes, but these are not observable using current clinical tools. We aimed to evaluate multinuclear MRI as a mean of assessing these changes. In our model, pigs were exposed to a controlled cortical impact (CCI) directly on the dura and scanned at 2 h and 2 days after injury. A multinuclear MRI protocol was used. It included hyperpolarized [1-<sup>13</sup>C]pyruvate MRI, which allows depiction of hyperpolarized carbon-13, through its metabolism from pyruvate to lactate or bicarbonate. At Day 2, cerebral microdialysis were performed, and tissue was obtained for analyses. At Day 0, the cerebral blood flow was reduced in the affected hemisphere (TBI: 31.7 mL/100 mL/min, contralateral: 35.6 mL/100 mL/min, p = 0.1227), and the impacted area showed reduced oxygenation (R<sub>2</sub>*, TBI: 33.11 s<sup>-1</sup>, contralateral: 22.20 s<sup>-1</sup>, p = 0.035). At both days, the lactate-to-pyruvate ratios (hyperpolarized [1-<sup>13</sup>C]pyruvate) were increased (Day 0: p = 0.023, Day 2: p = 0.022). However, this study can only evaluate the total injury and, thus, cannot differentiate effects from craniotomy and CCI. This metabolic difference was not found using cerebral microdialysis nor a lactate dehydrogenase (LDH) activity assay. The metabolic changes depicted in this study contributes to our understanding of mild TBI; however, the clinical potential of multinuclear MRI is yet to be determined.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 1","pages":"e5306"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646961/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142829533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A taxonomic guide to diffusion MRI tractography visualization tools. 弥散核磁共振成像束成像可视化工具分类指南。
IF 2.7 4区 医学
NMR in Biomedicine Pub Date : 2025-01-01 Epub Date: 2024-10-07 DOI: 10.1002/nbm.5267
Miriam Laamoumi, Tom Hendriks, Maxime Chamberland
{"title":"A taxonomic guide to diffusion MRI tractography visualization tools.","authors":"Miriam Laamoumi, Tom Hendriks, Maxime Chamberland","doi":"10.1002/nbm.5267","DOIUrl":"10.1002/nbm.5267","url":null,"abstract":"<p><p>Visualizing neuroimaging data is a key step in evaluating data quality, interpreting results, and communicating findings. This survey focuses on diffusion MRI tractography, which has been widely used in both research and clinical domains within the neuroimaging community. With an increasing number of tractography tools and software, navigating this landscape poses a challenge, especially for newcomers. A systematic exploration of a diverse range of features is proposed across 27 research tools, delving into their main purpose and examining the presence or absence of prevalent visualization and interactive techniques. The findings are structured within a proposed taxonomy, providing a comprehensive overview. Insights derived from this analysis will help (novice) researchers, clinicians, and developers in identifying knowledge gaps and navigating the landscape of tractography visualization tools.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5267"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631367/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142392150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic glucose-enhanced MRI of gliomas: A preliminary clinical application. 胶质瘤的动态葡萄糖增强磁共振成像:初步临床应用。
IF 2.7 4区 医学
NMR in Biomedicine Pub Date : 2025-01-01 Epub Date: 2024-11-05 DOI: 10.1002/nbm.5265
Jianhua Mo, Xiang Xu, Andong Ma, Mingjun Lu, Xianlong Wang, Qihong Rui, Jianbin Zhu, Haitao Wen, Genyun Lin, Linda Knutsson, Peter van Zijl, Zhibo Wen
{"title":"Dynamic glucose-enhanced MRI of gliomas: A preliminary clinical application.","authors":"Jianhua Mo, Xiang Xu, Andong Ma, Mingjun Lu, Xianlong Wang, Qihong Rui, Jianbin Zhu, Haitao Wen, Genyun Lin, Linda Knutsson, Peter van Zijl, Zhibo Wen","doi":"10.1002/nbm.5265","DOIUrl":"10.1002/nbm.5265","url":null,"abstract":"<p><p>The study aimed to investigate the feasibility of dynamic glucose-enhanced (DGE) MRI technology in the clinical application of glioma. Twenty patients with glioma were examined using a preoperative DGE-MRI protocol before clinical intervention. A brief hyperglycemic state was achieved by injecting 50 mL of 50% w/w D-glucose intravenously during the DGE imaging. The total acquisition time for the DGE was 15 min. Area-under-the-curve (AUC) images were calculated using the DGE images. AUC<sub>2-7min</sub> values of the glioma core, margin area, edema area, and contralateral brain parenchyma were compared using Mann-Whitney U tests. Overall, gray and white matter areas in the AUC images showed relatively low DGE signal change and bilateral symmetry. However, the tumor cores displayed a significant hyperintensity. A high DGE signal change was also seen in the necrotic, cystic, and cerebrospinal areas. These results show that DGE MRI is a feasible technique for the study of brain tumors as part of a clinical exam. Importantly, DGE MRI showed enhancement in areas confirmed histopathologically as tumors, whereas Gd T1w MRI did not show any enhancement in this area. Since the D-glucose molecule is smaller than Gd-based contrast agents, DGE MRI may be more sensitive to subtle blood-brain barrier disruptions, thus potentially providing early information about possible malignancy. These findings provide a new perspective for the further exploration and analysis of D-glucose uptake in brain tumors.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5265"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11604297/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142582923","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
31P multi-echo MRSI with low B1 + dual-band refocusing RF pulses. 采用低 B1 + 双波段再聚焦射频脉冲的 31P 多回波 MRSI。
IF 2.7 4区 医学
NMR in Biomedicine Pub Date : 2025-01-01 Epub Date: 2024-10-10 DOI: 10.1002/nbm.5273
Zahra Shams, Wybe J M van der Kemp, Dennis W J Klomp, Evita C Wiegers, Jannie P Wijnen
{"title":"<sup>31</sup>P multi-echo MRSI with low B<sub>1</sub> <sup>+</sup> dual-band refocusing RF pulses.","authors":"Zahra Shams, Wybe J M van der Kemp, Dennis W J Klomp, Evita C Wiegers, Jannie P Wijnen","doi":"10.1002/nbm.5273","DOIUrl":"10.1002/nbm.5273","url":null,"abstract":"<p><p><sup>31</sup>P magnetic resonance spectroscopy (MRS) can spectrally resolve metabolites involved in phospholipid metabolism whose levels are altered in many cancers. Ultra-high field facilitates the detection of phosphomonoesters (PMEs) and phosphodiesters (PDEs) with increased SNR and spectral resolution. Utilizing multi-echo MR spectroscopic imaging (MRSI) further enhances SNR and enables T<sub>2</sub> information estimation per metabolite. To address the specific absorption rate (SAR) challenges associated with high-power demanding adiabatic or composite block pulses in multi-echo phosphorus imaging, we present a dual-band refocusing RF pulse designed for operation at B<sub>1</sub> amplitudes of 14.8 μT which holds potential for integration into multi-echo sequences. Phantom and in vivo experiments conducted in the brain at 7 Tesla validated the effectiveness of this low-power dual-band RF pulse. Furthermore, we implemented the dual-band RF pulse into a multi-echo MRSI sequence where it offered the potential to increase the number of echo pulses within the same acquisition time compared to high-power adiabatic implementation, demonstrating its feasibility and practicality.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5273"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602691/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low-field MRI. 顺磁盐和琼脂糖配方,为低场磁共振成像提供所需的 T1 和 T2 值模型。
IF 2.7 4区 医学
NMR in Biomedicine Pub Date : 2025-01-01 Epub Date: 2024-11-17 DOI: 10.1002/nbm.5281
Kalina V Jordanova, Carla C Fraenza, Michele N Martin, Ye Tian, Sheng Shen, Christopher E Vaughn, Kevin J Walsh, Casey Walsh, Charlotte R Sappo, Stephen E Ogier, Megan E Poorman, Rui P Teixeira, William A Grissom, Krishna S Nayak, Matthew S Rosen, Andrew G Webb, Steven G Greenbaum, Velencia J Witherspoon, Kathryn E Keenan
{"title":"Paramagnetic salt and agarose recipes for phantoms with desired T1 and T2 values for low-field MRI.","authors":"Kalina V Jordanova, Carla C Fraenza, Michele N Martin, Ye Tian, Sheng Shen, Christopher E Vaughn, Kevin J Walsh, Casey Walsh, Charlotte R Sappo, Stephen E Ogier, Megan E Poorman, Rui P Teixeira, William A Grissom, Krishna S Nayak, Matthew S Rosen, Andrew G Webb, Steven G Greenbaum, Velencia J Witherspoon, Kathryn E Keenan","doi":"10.1002/nbm.5281","DOIUrl":"10.1002/nbm.5281","url":null,"abstract":"<p><p>Tissue-mimicking reference phantoms are indispensable for the development and optimization of magnetic resonance (MR) measurement sequences. Phantoms have greatest utility when they mimic the MR signals arising from tissue physiology; however, many of the properties underlying these signals, including tissue relaxation characteristics, can vary as a function of magnetic field strength. There has been renewed interest in magnetic resonance imaging (MRI) at field strengths less than 1 T, and phantoms developed for higher field strengths may not be physiologically relevant at these lower fields. This work focuses on developing materials with specific relaxation properties for lower magnetic field strengths. Specifically, we developed recipes that can be used to create synthetic samples for target nuclear magnetic resonance relaxation values for fields between 0.0065 and 0.55 T. <math> <semantics> <mrow><msub><mi>T</mi> <mn>1</mn></msub> </mrow> <annotation>$$ {T}_1 $$</annotation></semantics> </math> and <math> <semantics> <mrow><msub><mi>T</mi> <mn>2</mn></msub> </mrow> <annotation>$$ {T}_2 $$</annotation></semantics> </math> mixing models for agarose-based gels doped with a paramagnetic salt (one of CuSO<sub>4</sub>, GdCl<sub>3</sub>, MnCl<sub>2</sub>, or NiCl<sub>2</sub>) were created using relaxation measurements of synthetic gel samples at 0.0065, 0.064, and 0.55 T. Measurements were evaluated for variability with respect to measurement repeatability and changing synthesis protocol or laboratory temperature. The mixing models were used to identify formulations of agarose and salt composition to approximately mimic the relaxation times of five neurological tissues (blood, cerebrospinal fluid, fat, gray matter, and white matter) at 0.0065, 0.0475, 0.05, 0.064, and 0.55 T. These mimic sample formulations were measured at each field strength. Of these samples, the GdCl<sub>3</sub> and NiCl<sub>2</sub> measurements were closest to the target tissue relaxation times. The GdCl<sub>3</sub> or NiCl<sub>2</sub> mixing model recipes are recommended for creating target relaxation samples below 0.55 T. This work can help development of MRI methods and applications for low-field systems and applications.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":" ","pages":"e5281"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11602269/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142648038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Different Grey Matter Microstructural Patterns in Cognitively Healthy Versus Typical Ageing Healthy Versus Typical Brain Ageing.
IF 2.7 4区 医学
NMR in Biomedicine Pub Date : 2025-01-01 DOI: 10.1002/nbm.5305
Pavel Filip, J Riley McCarten, Laura Hemmy, Jillian Crocker, Michael Wolf, Jeromy Thotland, Zuzan Cayci, Shalom Michaeli, Lynn E Eberly, Melissa Terpstra, Silvia Mangia
{"title":"Different Grey Matter Microstructural Patterns in Cognitively Healthy Versus Typical Ageing Healthy Versus Typical Brain Ageing.","authors":"Pavel Filip, J Riley McCarten, Laura Hemmy, Jillian Crocker, Michael Wolf, Jeromy Thotland, Zuzan Cayci, Shalom Michaeli, Lynn E Eberly, Melissa Terpstra, Silvia Mangia","doi":"10.1002/nbm.5305","DOIUrl":"10.1002/nbm.5305","url":null,"abstract":"<p><p>Ageing is a complex phenomenon affecting a wide range of coexisting biological processes. The homogeneity of the studied population is an essential parameter for valid interpretations of outcomes. The presented study capitalises on the MRI data available in the Human Connectome Project-Aging (HCP-A) and, within individuals over 55 years of age who passed the HCP-A section criteria, compares a subgroup of 37 apparently neurocognitively healthy individuals selected based on stringent criteria with 37 age and sex-matched individuals still representative of typical ageing but who did not pass the stringent definition of neurocognitively healthy. Specifically, structural scans, diffusion weighted imaging and T1w/T2w ratio were utilised. Furthermore, data of 26 HCP-A participants older than 90 years as notional 'super-agers' were analysed. The relationship of age and several microstructural MRI metrics (T1w/T2w ratio, mean diffusivity, intracellular volume fraction and free water volume fraction) differed significantly between typical and healthy ageing cohort in areas highly relevant for ageing such as hippocampus, prefrontal and temporal cortex and cerebellum. However, the trajectories of the healthy ageing population did not show substantially better overlap with the findings in people older than 90 than those of the typical population. Therefore, caution must be exercised in the choice of adequate study group characteristics relevant for respective ageing-related hypotheses. Contrary to typical ageing group, the healthy ageing cohort may show generally stable levels of several MRI metrics of interest.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 1","pages":"e5305"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11637651/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142818751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Deuterium Metabolic Imaging Enables the Tracing of Substrate Fluxes Through the Tricarboxylic Acid Cycle in the Liver. 氘代谢成像可追踪肝脏三羧酸循环中的底物通量。
IF 2.7 4区 医学
NMR in Biomedicine Pub Date : 2025-01-01 DOI: 10.1002/nbm.5309
Viktoria Ehret, Sabine C Dürr, Usevalad Ustsinau, Joachim Friske, Thomas Scherer, Clemens Fürnsinn, Jana Starčuková, Thomas H Helbich, Cécile Philippe, Martin Krššák
{"title":"Deuterium Metabolic Imaging Enables the Tracing of Substrate Fluxes Through the Tricarboxylic Acid Cycle in the Liver.","authors":"Viktoria Ehret, Sabine C Dürr, Usevalad Ustsinau, Joachim Friske, Thomas Scherer, Clemens Fürnsinn, Jana Starčuková, Thomas H Helbich, Cécile Philippe, Martin Krššák","doi":"10.1002/nbm.5309","DOIUrl":"10.1002/nbm.5309","url":null,"abstract":"<p><p>Alterations in tricarboxylic acid (TCA) cycle metabolism are associated with hepatic metabolic disorders. Elevated hepatic acetate concentrations, often attributed to high caloric intake, are recognized as a pivotal factor in the etiology of obesity and metabolic syndrome. Therefore, the assessment of acetate breakdown and TCA cycle activity plays a central role in understanding the impact of diet-induced alterations on liver metabolism. Magnetic resonance-based deuterium metabolic imaging (DMI) could help to unravel the underlying mechanisms involved in disease development and progression, however, the application of conventional deuterated glucose does not lead to substantial enrichment in hepatic glutamine and glutamate. This study aimed to demonstrate the feasibility of DMI for tracking deuterated acetate breakdown via the TCA cycle in lean and diet-induced fatty liver (FL) rats using 3D DMI after an intraperitoneal infusion of sodium acetate-d3 at 9.4T. Localized and nonlocalized liver spectra acquired at 10 time points post-injection over a 130-min study revealed similar intrahepatic acetate uptake in both animal groups (AUC<sub>FL</sub> = 717.9 ± 131.1 mM▯min<sup>-1</sup>, AUC<sub>lean</sub> = 605.1 ± 119.9 mM▯min<sup>-1</sup>, p = 0.62). Metabolic breakdown could be observed in both groups with an emerging glutamine/glutamate (Glx) peak as a downstream metabolic product (AUC<sub>FL</sub> = 113.6 ± 23.8 mM▯min<sup>-1</sup>, AUC<sub>lean</sub> = 136.7 ± 41.7 mM▯min<sup>-1</sup>, p = 0.68). This study showed the viability of DMI for tracking substrate flux through the TCA cycle, underscoring its methodological potential for imaging metabolic processes in the body.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 1","pages":"e5309"},"PeriodicalIF":2.7,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11646830/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142829462","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信