全膝关节双指数T1ρ映射的ut_stack -of-螺旋序列的可行性。

IF 2.7 4区 医学 Q2 BIOPHYSICS
Hector L de Moura, Mahesh B Keerthivasan, Marcelo V W Zibetti, Pan Su, Michael J Alaia, Ravinder Regatte
{"title":"全膝关节双指数T1ρ映射的ut_stack -of-螺旋序列的可行性。","authors":"Hector L de Moura, Mahesh B Keerthivasan, Marcelo V W Zibetti, Pan Su, Michael J Alaia, Ravinder Regatte","doi":"10.1002/nbm.70008","DOIUrl":null,"url":null,"abstract":"<p><p>This study aimed to develop and evaluate a novel magnetization-prepared, ultra-short echo time (UTE)-capable, stack-of-spirals sequence (STFL) to quantify monoexponential and biexponential T<sub>1ρ</sub> maps of the whole knee joint, addressing limitations of existing MRI techniques in assessing bone-patellar tendon-bone (BPTB) donor site healing and graft remodeling after anterior cruciate ligament (ACL) reconstruction (ACLR). Experiments were performed with agar-gel model phantoms, seven healthy volunteers (four males, average age 31.4 years old), and five ACLR patients (three males, average age 28.2 years old). Compared with a conventional Cartesian turbo fast low angle shot (CTFL) sequence, the STFL sequence demonstrated an improved signal-to-noise ratio (SNR), increasing from 16.5 for CTFL to 21.7 for STFL. In ACLR patients, the STFL sequence accurately detected increased fractions of short T<sub>1ρ</sub> components within the ACL graft, rising from 0.15 to 0.38, compared with 0.11 to 0.18 with CTFL. Furthermore, the STFL sequence revealed significant decreases in the fraction of short T<sub>1ρ</sub> components in the patellar tendon of ACLR patients (from 0.6 to 0.47) compared with healthy controls, whereas no significant changes were observed with the CTFL sequence. These findings suggest that the STFL sequence holds promise for noninvasive assessment of BPTB donor site healing and graft maturation following ACLR.</p>","PeriodicalId":19309,"journal":{"name":"NMR in Biomedicine","volume":"38 3","pages":"e70008"},"PeriodicalIF":2.7000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility of a UTE Stack-of-Spirals Sequence for Biexponential T<sub>1ρ</sub> Mapping of Whole Knee Joint.\",\"authors\":\"Hector L de Moura, Mahesh B Keerthivasan, Marcelo V W Zibetti, Pan Su, Michael J Alaia, Ravinder Regatte\",\"doi\":\"10.1002/nbm.70008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>This study aimed to develop and evaluate a novel magnetization-prepared, ultra-short echo time (UTE)-capable, stack-of-spirals sequence (STFL) to quantify monoexponential and biexponential T<sub>1ρ</sub> maps of the whole knee joint, addressing limitations of existing MRI techniques in assessing bone-patellar tendon-bone (BPTB) donor site healing and graft remodeling after anterior cruciate ligament (ACL) reconstruction (ACLR). Experiments were performed with agar-gel model phantoms, seven healthy volunteers (four males, average age 31.4 years old), and five ACLR patients (three males, average age 28.2 years old). Compared with a conventional Cartesian turbo fast low angle shot (CTFL) sequence, the STFL sequence demonstrated an improved signal-to-noise ratio (SNR), increasing from 16.5 for CTFL to 21.7 for STFL. In ACLR patients, the STFL sequence accurately detected increased fractions of short T<sub>1ρ</sub> components within the ACL graft, rising from 0.15 to 0.38, compared with 0.11 to 0.18 with CTFL. Furthermore, the STFL sequence revealed significant decreases in the fraction of short T<sub>1ρ</sub> components in the patellar tendon of ACLR patients (from 0.6 to 0.47) compared with healthy controls, whereas no significant changes were observed with the CTFL sequence. These findings suggest that the STFL sequence holds promise for noninvasive assessment of BPTB donor site healing and graft maturation following ACLR.</p>\",\"PeriodicalId\":19309,\"journal\":{\"name\":\"NMR in Biomedicine\",\"volume\":\"38 3\",\"pages\":\"e70008\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NMR in Biomedicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1002/nbm.70008\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NMR in Biomedicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/nbm.70008","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0

摘要

本研究旨在开发和评估一种新型的磁性制备,超短回波时间(UTE)能力,螺旋序列堆栈(STFL),以量化整个膝关节的单指数和双指数T1ρ图,解决现有MRI技术在评估前交叉韧带(ACL)重建(ACLR)后骨-髌骨肌腱-骨(BPTB)供体部位愈合和移植物重塑方面的局限性。实验对象为琼脂凝胶模型幻影、7名健康志愿者(4名男性,平均年龄31.4岁)和5名ACLR患者(3名男性,平均年龄28.2岁)。与传统的Cartesian turbo fast low angle shot (CTFL)序列相比,STFL序列的信噪比(SNR)由CTFL序列的16.5提高到STFL序列的21.7。在ACLR患者中,STFL序列准确地检测到ACL移植物内短T1ρ成分的增加,从0.15上升到0.38,而CTFL为0.11至0.18。此外,与健康对照组相比,STFL序列显示ACLR患者髌骨肌腱中短T1ρ成分的比例显著降低(从0.6降至0.47),而CTFL序列无显著变化。这些发现表明,STFL序列有望在ACLR后无创评估BPTB供体愈合和移植物成熟。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Feasibility of a UTE Stack-of-Spirals Sequence for Biexponential T Mapping of Whole Knee Joint.

This study aimed to develop and evaluate a novel magnetization-prepared, ultra-short echo time (UTE)-capable, stack-of-spirals sequence (STFL) to quantify monoexponential and biexponential T maps of the whole knee joint, addressing limitations of existing MRI techniques in assessing bone-patellar tendon-bone (BPTB) donor site healing and graft remodeling after anterior cruciate ligament (ACL) reconstruction (ACLR). Experiments were performed with agar-gel model phantoms, seven healthy volunteers (four males, average age 31.4 years old), and five ACLR patients (three males, average age 28.2 years old). Compared with a conventional Cartesian turbo fast low angle shot (CTFL) sequence, the STFL sequence demonstrated an improved signal-to-noise ratio (SNR), increasing from 16.5 for CTFL to 21.7 for STFL. In ACLR patients, the STFL sequence accurately detected increased fractions of short T components within the ACL graft, rising from 0.15 to 0.38, compared with 0.11 to 0.18 with CTFL. Furthermore, the STFL sequence revealed significant decreases in the fraction of short T components in the patellar tendon of ACLR patients (from 0.6 to 0.47) compared with healthy controls, whereas no significant changes were observed with the CTFL sequence. These findings suggest that the STFL sequence holds promise for noninvasive assessment of BPTB donor site healing and graft maturation following ACLR.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NMR in Biomedicine
NMR in Biomedicine 医学-光谱学
CiteScore
6.00
自引率
10.30%
发文量
209
审稿时长
3-8 weeks
期刊介绍: NMR in Biomedicine is a journal devoted to the publication of original full-length papers, rapid communications and review articles describing the development of magnetic resonance spectroscopy or imaging methods or their use to investigate physiological, biochemical, biophysical or medical problems. Topics for submitted papers should be in one of the following general categories: (a) development of methods and instrumentation for MR of biological systems; (b) studies of normal or diseased organs, tissues or cells; (c) diagnosis or treatment of disease. Reports may cover work on patients or healthy human subjects, in vivo animal experiments, studies of isolated organs or cultured cells, analysis of tissue extracts, NMR theory, experimental techniques, or instrumentation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信