{"title":"Commonsense about Human Senses: Labeled Data Collection Processes","authors":"Ndapandula Nakashole","doi":"10.18653/v1/D19-6005","DOIUrl":"https://doi.org/10.18653/v1/D19-6005","url":null,"abstract":"We consider the problem of extracting from text commonsense knowledge pertaining to human senses such as sound and smell. First, we consider the problem of recognizing mentions of human senses in text. Our contribution is a method for acquiring labeled data. Experiments show the effectiveness of our proposed data labeling approach when used with standard machine learning models on the task of sense recognition in text. Second, we propose to extract novel, common sense relationships pertaining to sense perception concepts. Our contribution is a process for generating labeled data by leveraging large corpora and crowdsourcing questionnaires.","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"13 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"122673705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"How Pre-trained Word Representations Capture Commonsense Physical Comparisons","authors":"Pranav Goel","doi":"10.18653/v1/D19-6016","DOIUrl":"https://doi.org/10.18653/v1/D19-6016","url":null,"abstract":"Understanding common sense is important for effective natural language reasoning. One type of common sense is how two objects compare on physical properties such as size and weight: e.g., ‘is a house bigger than a person?’. We probe whether pre-trained representations capture comparisons and find they, in fact, have higher accuracy than previous approaches. They also generalize to comparisons involving objects not seen during training. We investigate how such comparisons are made: models learn a consistent ordering over all the objects in the comparisons. Probing models have significantly higher accuracy than those baseline models which use dataset artifacts: e.g., memorizing some words are larger than any other word.","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"377 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2019-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114627892","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hirokazu Kiyomaru, Kazumasa Omura, Yugo Murawaki, Daisuke Kawahara, S. Kurohashi
{"title":"Diversity-aware Event Prediction based on a Conditional Variational Autoencoder with Reconstruction","authors":"Hirokazu Kiyomaru, Kazumasa Omura, Yugo Murawaki, Daisuke Kawahara, S. Kurohashi","doi":"10.18653/v1/D19-6014","DOIUrl":"https://doi.org/10.18653/v1/D19-6014","url":null,"abstract":"Typical event sequences are an important class of commonsense knowledge. Formalizing the task as the generation of a next event conditioned on a current event, previous work in event prediction employs sequence-to-sequence (seq2seq) models. However, what can happen after a given event is usually diverse, a fact that can hardly be captured by deterministic models. In this paper, we propose to incorporate a conditional variational autoencoder (CVAE) into seq2seq for its ability to represent diverse next events as a probabilistic distribution. We further extend the CVAE-based seq2seq with a reconstruction mechanism to prevent the model from concentrating on highly typical events. To facilitate fair and systematic evaluation of the diversity-aware models, we also extend existing evaluation datasets by tying each current event to multiple next events. Experiments show that the CVAE-based models drastically outperform deterministic models in terms of precision and that the reconstruction mechanism improves the recall of CVAE-based models without sacrificing precision.","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"117 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"128931143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Understanding Commonsense Inference Aptitude of Deep Contextual Representations","authors":"Jeff Da, Jungo Kasai","doi":"10.18653/v1/d19-6001","DOIUrl":"https://doi.org/10.18653/v1/d19-6001","url":null,"abstract":"","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"20 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"114489937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"IIT-KGP at COIN 2019: Using pre-trained Language Models for modeling Machine Comprehension","authors":"Prakhar Sharma, Sumegh Roychowdhury","doi":"10.18653/v1/D19-6009","DOIUrl":"https://doi.org/10.18653/v1/D19-6009","url":null,"abstract":"In this paper, we describe our system for COIN 2019 Shared Task 1: Commonsense Inference in Everyday Narrations. We show the power of leveraging state-of-the-art pre-trained language models such as BERT(Bidirectional Encoder Representations from Transformers) and XLNet over other Commonsense Knowledge Base Resources such as ConceptNet and NELL for modeling machine comprehension. We used an ensemble of BERT-Large and XLNet-Large. Experimental results show that our model give substantial improvements over the baseline and other systems incorporating knowledge bases. We bagged 2nd position on the final test set leaderboard with an accuracy of 90.5%","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"129862029","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Pingan Smart Health and SJTU at COIN - Shared Task: utilizing Pre-trained Language Models and Common-sense Knowledge in Machine Reading Tasks","authors":"Xiepeng Li, Zhexi Zhang, Wei Zhu, Zheng Li, Yuan Ni, Peng Gao, Junchi Yan, G. Xie","doi":"10.18653/v1/D19-6011","DOIUrl":"https://doi.org/10.18653/v1/D19-6011","url":null,"abstract":"To solve the shared tasks of COIN: COmmonsense INference in Natural Language Processing) Workshop in , we need explore the impact of knowledge representation in modeling commonsense knowledge to boost performance of machine reading comprehension beyond simple text matching. There are two approaches to represent knowledge in the low-dimensional space. The first is to leverage large-scale unsupervised text corpus to train fixed or contextual language representations. The second approach is to explicitly express knowledge into a knowledge graph (KG), and then fit a model to represent the facts in the KG. We have experimented both (a) improving the fine-tuning of pre-trained language models on a task with a small dataset size, by leveraging datasets of similar tasks; and (b) incorporating the distributional representations of a KG onto the representations of pre-trained language models, via simply concatenation or multi-head attention. We find out that: (a) for task 1, first fine-tuning on larger datasets like RACE (Lai et al., 2017) and SWAG (Zellersetal.,2018), and then fine-tuning on the target task improve the performance significantly; (b) for task 2, we find out the incorporating a KG of commonsense knowledge, WordNet (Miller, 1995) into the Bert model (Devlin et al., 2018) is helpful, however, it will hurts the performace of XLNET (Yangetal.,2019), a more powerful pre-trained model. Our approaches achieve the state-of-the-art results on both shared task’s official test data, outperforming all the other submissions.","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"10 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"130974220","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"BLCU-NLP at COIN-Shared Task1: Stagewise Fine-tuning BERT for Commonsense Inference in Everyday Narrations","authors":"Chunhua Liu, Shike Wang, Bohan Li, Dong Yu","doi":"10.18653/v1/D19-6012","DOIUrl":"https://doi.org/10.18653/v1/D19-6012","url":null,"abstract":"This paper describes our system for COIN Shared Task 1: Commonsense Inference in Everyday Narrations. To inject more external knowledge to better reason over the narrative passage, question and answer, the system adopts a stagewise fine-tuning method based on pre-trained BERT model. More specifically, the first stage is to fine-tune on addi- tional machine reading comprehension dataset to learn more commonsense knowledge. The second stage is to fine-tune on target-task (MCScript2.0) with MCScript (2018) dataset assisted. Experimental results show that our system achieves significant improvements over the baseline systems with 84.2% accuracy on the official test dataset.","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"176 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116396876","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Jeff Da at COIN - Shared Task","authors":"Jeff Da","doi":"10.18653/V1/D19-6010","DOIUrl":"https://doi.org/10.18653/V1/D19-6010","url":null,"abstract":"","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"25 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"120913909","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Simon Ostermann, Sheng Zhang, Michael Roth, Peter Clark
{"title":"Commonsense Inference in Natural Language Processing (COIN) - Shared Task Report","authors":"Simon Ostermann, Sheng Zhang, Michael Roth, Peter Clark","doi":"10.18653/v1/D19-6007","DOIUrl":"https://doi.org/10.18653/v1/D19-6007","url":null,"abstract":"This paper reports on the results of the shared tasks of the COIN workshop at EMNLP-IJCNLP 2019. The tasks consisted of two machine comprehension evaluations, each of which tested a system’s ability to answer questions/queries about a text. Both evaluations were designed such that systems need to exploit commonsense knowledge, for example, in the form of inferences over information that is available in the common ground but not necessarily mentioned in the text. A total of five participating teams submitted systems for the shared tasks, with the best submitted system achieving 90.6% accuracy and 83.7% F1-score on task 1 and task 2, respectively.","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127488168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"KARNA at COIN Shared Task 1: Bidirectional Encoder Representations from Transformers with relational knowledge for machine comprehension with common sense","authors":"Yash Jain, Chinmay Singh","doi":"10.18653/v1/D19-6008","DOIUrl":"https://doi.org/10.18653/v1/D19-6008","url":null,"abstract":"This paper describes our model for COmmonsense INference in Natural Language Processing (COIN) shared task 1: Commonsense Inference in Everyday Narrations. This paper explores the use of Bidirectional Encoder Representations from Transformers(BERT) along with external relational knowledge from ConceptNet to tackle the problem of commonsense inference. The input passage, question, and answer are augmented with relational knowledge from ConceptNet. Using this technique we are able to achieve an accuracy of 73.3 % on the official test data.","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"144 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116305015","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}