硬币共享任务1的blu - nlp:日常叙述中常识推理的阶段性微调BERT

Chunhua Liu, Shike Wang, Bohan Li, Dong Yu
{"title":"硬币共享任务1的blu - nlp:日常叙述中常识推理的阶段性微调BERT","authors":"Chunhua Liu, Shike Wang, Bohan Li, Dong Yu","doi":"10.18653/v1/D19-6012","DOIUrl":null,"url":null,"abstract":"This paper describes our system for COIN Shared Task 1: Commonsense Inference in Everyday Narrations. To inject more external knowledge to better reason over the narrative passage, question and answer, the system adopts a stagewise fine-tuning method based on pre-trained BERT model. More specifically, the first stage is to fine-tune on addi- tional machine reading comprehension dataset to learn more commonsense knowledge. The second stage is to fine-tune on target-task (MCScript2.0) with MCScript (2018) dataset assisted. Experimental results show that our system achieves significant improvements over the baseline systems with 84.2% accuracy on the official test dataset.","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"176 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"BLCU-NLP at COIN-Shared Task1: Stagewise Fine-tuning BERT for Commonsense Inference in Everyday Narrations\",\"authors\":\"Chunhua Liu, Shike Wang, Bohan Li, Dong Yu\",\"doi\":\"10.18653/v1/D19-6012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes our system for COIN Shared Task 1: Commonsense Inference in Everyday Narrations. To inject more external knowledge to better reason over the narrative passage, question and answer, the system adopts a stagewise fine-tuning method based on pre-trained BERT model. More specifically, the first stage is to fine-tune on addi- tional machine reading comprehension dataset to learn more commonsense knowledge. The second stage is to fine-tune on target-task (MCScript2.0) with MCScript (2018) dataset assisted. Experimental results show that our system achieves significant improvements over the baseline systems with 84.2% accuracy on the official test dataset.\",\"PeriodicalId\":192716,\"journal\":{\"name\":\"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing\",\"volume\":\"176 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/D19-6012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-6012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文描述了我们的COIN共享任务1:日常叙述中的常识推理系统。为了注入更多的外部知识对叙事段落、问答进行更好的推理,系统采用了基于预训练BERT模型的分阶段微调方法。更具体地说,第一阶段是对附加的机器阅读理解数据集进行微调,以学习更多的常识性知识。第二阶段是在MCScript(2018)数据集辅助下对目标任务(MCScript2.0)进行微调。实验结果表明,我们的系统在官方测试数据集上取得了显著的改进,准确率达到84.2%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BLCU-NLP at COIN-Shared Task1: Stagewise Fine-tuning BERT for Commonsense Inference in Everyday Narrations
This paper describes our system for COIN Shared Task 1: Commonsense Inference in Everyday Narrations. To inject more external knowledge to better reason over the narrative passage, question and answer, the system adopts a stagewise fine-tuning method based on pre-trained BERT model. More specifically, the first stage is to fine-tune on addi- tional machine reading comprehension dataset to learn more commonsense knowledge. The second stage is to fine-tune on target-task (MCScript2.0) with MCScript (2018) dataset assisted. Experimental results show that our system achieves significant improvements over the baseline systems with 84.2% accuracy on the official test dataset.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信