IIT-KGP在COIN 2019:使用预训练的语言模型建模机器理解

Prakhar Sharma, Sumegh Roychowdhury
{"title":"IIT-KGP在COIN 2019:使用预训练的语言模型建模机器理解","authors":"Prakhar Sharma, Sumegh Roychowdhury","doi":"10.18653/v1/D19-6009","DOIUrl":null,"url":null,"abstract":"In this paper, we describe our system for COIN 2019 Shared Task 1: Commonsense Inference in Everyday Narrations. We show the power of leveraging state-of-the-art pre-trained language models such as BERT(Bidirectional Encoder Representations from Transformers) and XLNet over other Commonsense Knowledge Base Resources such as ConceptNet and NELL for modeling machine comprehension. We used an ensemble of BERT-Large and XLNet-Large. Experimental results show that our model give substantial improvements over the baseline and other systems incorporating knowledge bases. We bagged 2nd position on the final test set leaderboard with an accuracy of 90.5%","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"IIT-KGP at COIN 2019: Using pre-trained Language Models for modeling Machine Comprehension\",\"authors\":\"Prakhar Sharma, Sumegh Roychowdhury\",\"doi\":\"10.18653/v1/D19-6009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we describe our system for COIN 2019 Shared Task 1: Commonsense Inference in Everyday Narrations. We show the power of leveraging state-of-the-art pre-trained language models such as BERT(Bidirectional Encoder Representations from Transformers) and XLNet over other Commonsense Knowledge Base Resources such as ConceptNet and NELL for modeling machine comprehension. We used an ensemble of BERT-Large and XLNet-Large. Experimental results show that our model give substantial improvements over the baseline and other systems incorporating knowledge bases. We bagged 2nd position on the final test set leaderboard with an accuracy of 90.5%\",\"PeriodicalId\":192716,\"journal\":{\"name\":\"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing\",\"volume\":\"55 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.18653/v1/D19-6009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-6009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本文中,我们描述了我们的COIN 2019共享任务1:日常叙述中的常识推理系统。我们展示了利用最先进的预训练语言模型(如BERT(来自变压器的双向编码器表示)和XLNet)在其他常识知识库资源(如ConceptNet和NELL)上对机器理解建模的强大功能。我们使用BERT-Large和XLNet-Large的集合。实验结果表明,我们的模型比基线和其他包含知识库的系统有了实质性的改进。我们以90.5%的准确率在最终测试集排行榜上获得第二名
本文章由计算机程序翻译,如有差异,请以英文原文为准。
IIT-KGP at COIN 2019: Using pre-trained Language Models for modeling Machine Comprehension
In this paper, we describe our system for COIN 2019 Shared Task 1: Commonsense Inference in Everyday Narrations. We show the power of leveraging state-of-the-art pre-trained language models such as BERT(Bidirectional Encoder Representations from Transformers) and XLNet over other Commonsense Knowledge Base Resources such as ConceptNet and NELL for modeling machine comprehension. We used an ensemble of BERT-Large and XLNet-Large. Experimental results show that our model give substantial improvements over the baseline and other systems incorporating knowledge bases. We bagged 2nd position on the final test set leaderboard with an accuracy of 90.5%
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信