Commonsense Inference in Natural Language Processing (COIN) - Shared Task Report

Simon Ostermann, Sheng Zhang, Michael Roth, Peter Clark
{"title":"Commonsense Inference in Natural Language Processing (COIN) - Shared Task Report","authors":"Simon Ostermann, Sheng Zhang, Michael Roth, Peter Clark","doi":"10.18653/v1/D19-6007","DOIUrl":null,"url":null,"abstract":"This paper reports on the results of the shared tasks of the COIN workshop at EMNLP-IJCNLP 2019. The tasks consisted of two machine comprehension evaluations, each of which tested a system’s ability to answer questions/queries about a text. Both evaluations were designed such that systems need to exploit commonsense knowledge, for example, in the form of inferences over information that is available in the common ground but not necessarily mentioned in the text. A total of five participating teams submitted systems for the shared tasks, with the best submitted system achieving 90.6% accuracy and 83.7% F1-score on task 1 and task 2, respectively.","PeriodicalId":192716,"journal":{"name":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the First Workshop on Commonsense Inference in Natural Language Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/D19-6007","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

This paper reports on the results of the shared tasks of the COIN workshop at EMNLP-IJCNLP 2019. The tasks consisted of two machine comprehension evaluations, each of which tested a system’s ability to answer questions/queries about a text. Both evaluations were designed such that systems need to exploit commonsense knowledge, for example, in the form of inferences over information that is available in the common ground but not necessarily mentioned in the text. A total of five participating teams submitted systems for the shared tasks, with the best submitted system achieving 90.6% accuracy and 83.7% F1-score on task 1 and task 2, respectively.
自然语言处理(COIN)中的常识推理-共享任务报告
本文报告了EMNLP-IJCNLP 2019上COIN研讨会共享任务的结果。这些任务包括两个机器理解评估,每个评估都测试系统回答关于文本的问题/查询的能力。这两种评价都是这样设计的,即系统需要利用常识性知识,例如,以对在共同基础上可获得但不一定在案文中提到的信息进行推理的形式。共有5个参赛团队提交了共享任务的系统,其中提交的最佳系统在任务1和任务2上分别获得了90.6%的准确率和83.7%的f1分。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信