npj Quantum Information最新文献

筛选
英文 中文
Heisenberg-limited Hamiltonian learning for interacting bosons 相互作用玻色子的海森堡有限哈密顿学习
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-09-11 DOI: 10.1038/s41534-024-00881-2
Haoya Li, Yu Tong, Tuvia Gefen, Hongkang Ni, Lexing Ying
{"title":"Heisenberg-limited Hamiltonian learning for interacting bosons","authors":"Haoya Li, Yu Tong, Tuvia Gefen, Hongkang Ni, Lexing Ying","doi":"10.1038/s41534-024-00881-2","DOIUrl":"https://doi.org/10.1038/s41534-024-00881-2","url":null,"abstract":"<p>We develop a protocol for learning a class of interacting bosonic Hamiltonians from dynamics with Heisenberg-limited scaling. For Hamiltonians with an underlying bounded-degree graph structure, we can learn all parameters with root mean square error <i>ϵ</i> using <span>({mathcal{O}}(1/epsilon ))</span> total evolution time, which is independent of the system size, in a way that is robust against state-preparation and measurement error. In the protocol, we only use bosonic coherent states, beam splitters, phase shifters, and homodyne measurements, which are easy to implement on many experimental platforms. A key technique we develop is to apply random unitaries to enforce symmetry in the effective Hamiltonian, which may be of independent interest.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"213 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142166156","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hamiltonian dynamics on digital quantum computers without discretization error 数字量子计算机上的哈密顿动力学无离散化误差
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-09-07 DOI: 10.1038/s41534-024-00877-y
Etienne Granet, Henrik Dreyer
{"title":"Hamiltonian dynamics on digital quantum computers without discretization error","authors":"Etienne Granet, Henrik Dreyer","doi":"10.1038/s41534-024-00877-y","DOIUrl":"https://doi.org/10.1038/s41534-024-00877-y","url":null,"abstract":"<p>We introduce an algorithm to compute expectation values of time-evolved observables on digital quantum computers that requires only bounded average circuit depth to reach arbitrary precision, i.e. produces an unbiased estimator with finite average depth. This finite depth comes with an attenuation of the measured expectation value by a known amplitude, requiring more shots per circuit. The average gate count per circuit for simulation time <i>t</i> is <span>({mathcal{O}}({t}^{2}{mu }^{2}))</span> with <i>μ</i> the sum of the Hamiltonian coefficients, without dependence on precision, providing a significant improvement over previous algorithms. With shot noise, the average runtime is <span>({mathcal{O}}({t}^{2}{mu }^{2}{epsilon }^{-2}))</span> to reach precision <i>ϵ</i>. The only dependence in the sum of the coefficients makes it particularly adapted to non-sparse Hamiltonians. The algorithm generalizes to time-dependent Hamiltonians, appearing for example in adiabatic state preparation. These properties make it particularly suitable for present-day relatively noisy hardware that supports only circuits with moderate depth.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"15 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142144420","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Engineered dissipation to mitigate barren plateaus 设计消散以缓解贫瘠高原
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-09-04 DOI: 10.1038/s41534-024-00875-0
Antonio Sannia, Francesco Tacchino, Ivano Tavernelli, Gian Luca Giorgi, Roberta Zambrini
{"title":"Engineered dissipation to mitigate barren plateaus","authors":"Antonio Sannia, Francesco Tacchino, Ivano Tavernelli, Gian Luca Giorgi, Roberta Zambrini","doi":"10.1038/s41534-024-00875-0","DOIUrl":"https://doi.org/10.1038/s41534-024-00875-0","url":null,"abstract":"<p>Variational quantum algorithms represent a powerful approach for solving optimization problems on noisy quantum computers, with a broad spectrum of potential applications ranging from chemistry to machine learning. However, their performances in practical implementations crucially depend on the effectiveness of quantum circuit training, which can be severely limited by phenomena such as barren plateaus. While, in general, dissipation is detrimental for quantum algorithms, and noise itself can actually induce barren plateaus, here we describe how the inclusion of properly engineered Markovian losses after each unitary quantum circuit layer allows for the trainability of quantum models. We identify the required form of the dissipation processes and establish that their optimization is efficient. We benchmark the generality of our proposal in both a synthetic and a practical quantum chemistry example, demonstrating its effectiveness and potential impact across different domains.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"9 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142138230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MadQCI: a heterogeneous and scalable SDN-QKD network deployed in production facilities MadQCI:在生产设施中部署的异构、可扩展的 SDN-QKD 网络
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-09-02 DOI: 10.1038/s41534-024-00873-2
V. Martin, J. P. Brito, L. Ortíz, R. B. Méndez, J. S. Buruaga, R. J. Vicente, A. Sebastián-Lombraña, D. Rincón, F. Pérez, C. Sánchez, M. Peev, H. H. Brunner, F. Fung, A. Poppe, F. Fröwis, A. J. Shields, R. I. Woodward, H. Griesser, S. Roehrich, F. de la Iglesia, C. Abellán, M. Hentschel, J. M. Rivas-Moscoso, A. Pastor-Perales, J. Folgueira, D. López
{"title":"MadQCI: a heterogeneous and scalable SDN-QKD network deployed in production facilities","authors":"V. Martin, J. P. Brito, L. Ortíz, R. B. Méndez, J. S. Buruaga, R. J. Vicente, A. Sebastián-Lombraña, D. Rincón, F. Pérez, C. Sánchez, M. Peev, H. H. Brunner, F. Fung, A. Poppe, F. Fröwis, A. J. Shields, R. I. Woodward, H. Griesser, S. Roehrich, F. de la Iglesia, C. Abellán, M. Hentschel, J. M. Rivas-Moscoso, A. Pastor-Perales, J. Folgueira, D. López","doi":"10.1038/s41534-024-00873-2","DOIUrl":"https://doi.org/10.1038/s41534-024-00873-2","url":null,"abstract":"<p>Current quantum key distribution (QKD) networks focus almost exclusively on transporting secret keys at the highest possible rate. Consequently, they are built as mostly fixed, ad hoc, logically, and physically isolated infrastructures designed to avoid any penalty to the quantum channel. This architecture is neither scalable nor cost-effective and future, real-world deployments will differ considerably. The structure of the MadQCI QKD network presented here is based on disaggregated components and modern paradigms especially designed for flexibility, upgradability, and facilitating the integration of QKD in the security and telecommunications-networks ecosystem. These underlying ideas have been tested by deploying many QKD systems from several manufacturers in a real-world, multi-tenant telecommunications network, installed in production facilities and sharing the infrastructure with commercial traffic. Different technologies have been used in different links to address the variety of situations and needs that arise in real networks, exploring a wide range of possibilities. Finally, a set of realistic use cases has been implemented to demonstrate the validity and performance of the network. The testing took place during a period close to three years, where most of the nodes were continuously active.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"6 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142118092","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Beating one bit of communication with and without quantum pseudo-telepathy 有量子伪心灵感应和无量子伪心灵感应的比特通信
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-08-22 DOI: 10.1038/s41534-024-00874-1
István Márton, Erika Bene, Péter Diviánszky, Tamás Vértesi
{"title":"Beating one bit of communication with and without quantum pseudo-telepathy","authors":"István Márton, Erika Bene, Péter Diviánszky, Tamás Vértesi","doi":"10.1038/s41534-024-00874-1","DOIUrl":"https://doi.org/10.1038/s41534-024-00874-1","url":null,"abstract":"<p>According to Bell’s theorem, certain entangled states cannot be simulated classically using local hidden variables (LHV). Suppose that we can augment LHV by some amount of classical communication. The question then arises as to how many bits are needed to simulate entangled states? There is very strong evidence that a single bit of communication is powerful enough to simulate projective measurements on any two-qubit entangled state. However, the problem of simulating measurements on higher-dimensional systems remains largely unexplored. In this study, we present Bell-like scenarios, even with three inputs per party, in which bipartite correlations resulting from measurements on higher-dimensional states cannot be simulated with a single bit of communication. We consider the case where the communication direction is fixed and the case where it is bidirectional. To this end, we introduce constructions based on parallel repetition of pseudo-telepathy games and an original algorithm based on branch-and-bound technique to compute the one-bit classical bound. Two copies of emblematic Bell expressions, such as the Magic square pseudo-telepathy game, prove to be particularly powerful, requiring a 16 × 16 state to beat the bidirectional one-bit classical bound, and look a promising candidate for implementation on an optical platform.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"3 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142042510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Coherence of a field gradient driven singlet-triplet qubit coupled to multielectron spin states in 28Si/SiGe 28Si/SiGe 中与多电子自旋态耦合的场梯度驱动单三重四比特的相干性
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-08-14 DOI: 10.1038/s41534-024-00869-y
Younguk Song, Jonginn Yun, Jehyun Kim, Wonjin Jang, Hyeongyu Jang, Jaemin Park, Min-Kyun Cho, Hanseo Sohn, Noritaka Usami, Satoru Miyamoto, Kohei M. Itoh, Dohun Kim
{"title":"Coherence of a field gradient driven singlet-triplet qubit coupled to multielectron spin states in 28Si/SiGe","authors":"Younguk Song, Jonginn Yun, Jehyun Kim, Wonjin Jang, Hyeongyu Jang, Jaemin Park, Min-Kyun Cho, Hanseo Sohn, Noritaka Usami, Satoru Miyamoto, Kohei M. Itoh, Dohun Kim","doi":"10.1038/s41534-024-00869-y","DOIUrl":"https://doi.org/10.1038/s41534-024-00869-y","url":null,"abstract":"<p>Engineered spin-electric coupling enables spin qubits in semiconductor nanostructures to be manipulated efficiently and addressed individually. While synthetic spin-orbit coupling using a micromagnet is widely investigated for driving and entangling qubits based on single spins in silicon, the baseband control of encoded spin qubits with a micromagnet in isotopically purified silicon has been less well investigated. Here, we demonstrate fast singlet-triplet qubit oscillation (~100 MHz) in a gate-defined double quantum dot in <sup>28</sup>Si/SiGe with an on-chip micromagnet with which we show the oscillation quality factor of an encoded spin qubit exceeding 580. The coherence time <i>T</i><sub>2</sub>* is analyzed as a function of potential detuning and an external magnetic field. In weak magnetic fields, the coherence is limited by frequency-independent noise whose time scale is faster than the typical data acquisition time of ~100 ms, which limits the <i>T</i><sub>2</sub>* below 1 μs in the ergodic limit. We present evidence of sizable and coherent coupling of the qubit with the spin states of a nearby quantum dot, demonstrating that appropriate spin-electric coupling may enable a charge-based two-qubit gate in a (1,1) charge configuration.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"8 Suppl 4 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980980","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mitigation of interfacial dielectric loss in aluminum-on-silicon superconducting qubits 减轻铝硅超导量子比特的界面介电损耗
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-08-14 DOI: 10.1038/s41534-024-00868-z
Janka Biznárová, Amr Osman, Emil Rehnman, Lert Chayanun, Christian Križan, Per Malmberg, Marcus Rommel, Christopher Warren, Per Delsing, August Yurgens, Jonas Bylander, Anita Fadavi Roudsari
{"title":"Mitigation of interfacial dielectric loss in aluminum-on-silicon superconducting qubits","authors":"Janka Biznárová, Amr Osman, Emil Rehnman, Lert Chayanun, Christian Križan, Per Malmberg, Marcus Rommel, Christopher Warren, Per Delsing, August Yurgens, Jonas Bylander, Anita Fadavi Roudsari","doi":"10.1038/s41534-024-00868-z","DOIUrl":"https://doi.org/10.1038/s41534-024-00868-z","url":null,"abstract":"<p>We demonstrate aluminum-on-silicon planar transmon qubits with time-averaged <i>T</i><sub>1</sub> energy relaxation times of up to 270 μs, corresponding to <i>Q</i> = 5 million, and a highest observed value of 501 μs. Through materials analysis techniques and numerical simulations we investigate the dominant source of energy loss, and devise and demonstrate a strategy toward its mitigation. Growing aluminum films thicker than 300 nm reduces the presence of oxide, a known host of defects, near the substrate-metal interface, as confirmed by time-of-flight secondary ion mass spectrometry. A loss analysis of coplanar waveguide resonators shows that this results in a reduction of dielectric loss due to two-level system defects. The correlation between the enhanced performance of our devices and the film thickness is due to the aluminum growth in columnar structures of parallel grain boundaries: transmission electron microscopy shows larger grains in the thicker film, and consequently fewer grain boundaries containing oxide near the substrate-metal interface.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"18 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980979","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Enhancing the electron pair approximation with measurements on trapped-ion quantum computers 利用对困离子量子计算机的测量增强电子对近似性
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-08-13 DOI: 10.1038/s41534-024-00871-4
Luning Zhao, Qingfeng Wang, Joshua J. Goings, Kyujin Shin, Woomin Kyoung, Seunghyo Noh, Young Min Rhee, Kyungmin Kim
{"title":"Enhancing the electron pair approximation with measurements on trapped-ion quantum computers","authors":"Luning Zhao, Qingfeng Wang, Joshua J. Goings, Kyujin Shin, Woomin Kyoung, Seunghyo Noh, Young Min Rhee, Kyungmin Kim","doi":"10.1038/s41534-024-00871-4","DOIUrl":"https://doi.org/10.1038/s41534-024-00871-4","url":null,"abstract":"<p>The electron pair approximation offers an efficient variational quantum eigensolver (VQE) approach for chemistry simulations on quantum computers. With the number of entangling gates scaling quadratically with system size and a constant measurement overhead, the orbital optimized unitary pair coupled cluster double (oo-upCCD) ansatz strikes a balance between accuracy and efficiency. However, the electron pair approximation prevents the method from achieving quantitative accuracy. To improve it, we explore the theory of second order perturbation (PT2) correction to oo-upCCD. PT2 accounts for the missing broken-pair contributions in oo-upCCD, while retaining its efficiencies. For molecular bond stretching and chemical reactions, the method significantly improves the predicted energy accuracy, reducing oo-upCCD’s error by up to 90%. On IonQ’s quantum computers, we find that the PT2 energy correction is highly noise-resilient. The predicted VQE-PT2 reaction energies are in excellent agreement with noise-free simulators after applying simple error mitigations solely on the VQE energies.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"94 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141980981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Loss-induced quantum nonreciprocity 损失引起的量子非互惠性
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-08-12 DOI: 10.1038/s41534-024-00870-5
Baijun Li, Yunlan Zuo, Le-Man Kuang, Hui Jing, Chaohong Lee
{"title":"Loss-induced quantum nonreciprocity","authors":"Baijun Li, Yunlan Zuo, Le-Man Kuang, Hui Jing, Chaohong Lee","doi":"10.1038/s41534-024-00870-5","DOIUrl":"https://doi.org/10.1038/s41534-024-00870-5","url":null,"abstract":"<p>Attribute to their robustness against loss and external noise, nonreciprocal photonic devices hold great promise for applications in quantum information processing. Recent advancements have demonstrated that nonreciprocal optical transmission in linear systems can be achieved through the strategic introduction of loss. However, a crucial question remains unanswered: can loss be harnessed as a resource for generating nonreciprocal quantum correlations? Here, we take a counterintuitive stance by engineering loss to generate a vital form of nonreciprocal quantum correlations, termed <i>nonreciprocal photon blockade</i>. We examine a dissipative three-cavity system comprising two nonlinear cavities and a linear cavity. The interplay of loss and nonlinearity leads to a robust nonreciprocal single- and two-photon blockade, facilitated by destructive quantum interference. Furthermore, we demonstrate the tunability of this nonreciprocal photon blockade by manipulating the relative phase between the two nonlinear cavities. Remarkably, this allows for the reversal of the direction of nonreciprocity. Our study not only sheds a light on the concept of loss-engineered quantum nonreciprocity but also opens up a pathway for the design of quantum nonreciprocal photonic devices.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"30 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141973796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Scalable determination of multipartite entanglement in quantum networks 量子网络中多方位纠缠的可扩展测定
IF 7.6 1区 物理与天体物理
npj Quantum Information Pub Date : 2024-08-08 DOI: 10.1038/s41534-024-00867-0
Wei-Ting Kao, Chien-Ying Huang, Tung-Ju Tsai, Shih-Hsuan Chen, Sheng-Yan Sun, Yu-Cheng Li, Teh-Lu Liao, Chih-Sung Chuu, He Lu, Che-Ming Li
{"title":"Scalable determination of multipartite entanglement in quantum networks","authors":"Wei-Ting Kao, Chien-Ying Huang, Tung-Ju Tsai, Shih-Hsuan Chen, Sheng-Yan Sun, Yu-Cheng Li, Teh-Lu Liao, Chih-Sung Chuu, He Lu, Che-Ming Li","doi":"10.1038/s41534-024-00867-0","DOIUrl":"https://doi.org/10.1038/s41534-024-00867-0","url":null,"abstract":"<p>Quantum networks comprised of entangled end nodes serve stronger than the classical correlation for unparalleled quantum internet applications. However, practical quantum networking is affected by noise, which at its worst, causes end nodes to be described by pre-existing classical data. In such untrusted networks, determining quantum network fidelity and genuine multi-node entanglement becomes crucial. Here, we show that determining quantum network fidelity and genuine <i>N</i>-node entanglement in an untrusted star network requires only <i>N</i> + 1 measurement settings. This method establishes a semi-trusted framework, allowing some nodes to relax their assumptions. Our network determination method is enabled by detecting genuine <i>N</i>-node Einstein-Podolsky-Rosen steerability. Experimentally, using spontaneous parametric down-conversion entanglement sources, we demonstrate the determinations of genuine 3-photon and 4-photon quantum networks and the false positives of the widely used entanglement witness, the fidelity criterion of 1/2. Our results provide a scalable method for the determination of multipartite entanglement in realistic quantum networks.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"26 1","pages":""},"PeriodicalIF":7.6,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信