Revising the quantum work fluctuation framework to encompass energy conservation

IF 6.6 1区 物理与天体物理 Q1 PHYSICS, APPLIED
Giulia Rubino, Karen V. Hovhannisyan, Paul Skrzypczyk
{"title":"Revising the quantum work fluctuation framework to encompass energy conservation","authors":"Giulia Rubino, Karen V. Hovhannisyan, Paul Skrzypczyk","doi":"10.1038/s41534-025-01053-6","DOIUrl":null,"url":null,"abstract":"<p>Work is a process-based quantity, and its measurement typically requires interaction with a measuring device multiple times. While classical systems allow for non-invasive and accurate measurements, quantum systems present unique challenges due to the influence of the measuring device on the final value of work. As recent studies have shown, among these challenges is the impossibility of formulating a universal definition of work that respects energy conservation for coherent quantum systems and is compatible with the Jarzynski equality—a fluctuation relation linking the equilibrium free energy difference to the non-equilibrium work. Here, we overcome this challenge by introducing a genuinely quantum, positive correction to the Jarzynski equality stemming from imposing energy conservation. When sufficiently large, this correction forces quantum work to violate the second law more often. Moreover, we construct modified two-point measurement (TPM) schemes for work, along with circuit implementations for them. These measurement schemes correctly certify energy conservation and remain consistent with our quantum-corrected fluctuation relation.</p>","PeriodicalId":19212,"journal":{"name":"npj Quantum Information","volume":"12 1","pages":""},"PeriodicalIF":6.6000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Quantum Information","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41534-025-01053-6","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Work is a process-based quantity, and its measurement typically requires interaction with a measuring device multiple times. While classical systems allow for non-invasive and accurate measurements, quantum systems present unique challenges due to the influence of the measuring device on the final value of work. As recent studies have shown, among these challenges is the impossibility of formulating a universal definition of work that respects energy conservation for coherent quantum systems and is compatible with the Jarzynski equality—a fluctuation relation linking the equilibrium free energy difference to the non-equilibrium work. Here, we overcome this challenge by introducing a genuinely quantum, positive correction to the Jarzynski equality stemming from imposing energy conservation. When sufficiently large, this correction forces quantum work to violate the second law more often. Moreover, we construct modified two-point measurement (TPM) schemes for work, along with circuit implementations for them. These measurement schemes correctly certify energy conservation and remain consistent with our quantum-corrected fluctuation relation.

Abstract Image

修正量子功涨落框架以包含能量守恒
功是一个基于过程的量,它的测量通常需要与测量设备多次交互。虽然经典系统允许非侵入性和精确的测量,但由于测量设备对最终功值的影响,量子系统提出了独特的挑战。正如最近的研究所表明的,在这些挑战中,不可能制定一个普遍的功的定义,既尊重相干量子系统的能量守恒,又与Jarzynski等式兼容——一个将平衡自由能差与非平衡功联系起来的波动关系。在这里,我们克服了这一挑战,通过引入一个真正的量子,正修正雅津斯基等式源于施加能量守恒。当足够大时,这种修正迫使量子功更频繁地违反第二定律。此外,我们构建了改进的两点测量(TPM)方案,以及它们的电路实现。这些测量方案正确地证明了能量守恒,并与我们的量子校正涨落关系保持一致。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
npj Quantum Information
npj Quantum Information Computer Science-Computer Science (miscellaneous)
CiteScore
13.70
自引率
3.90%
发文量
130
审稿时长
29 weeks
期刊介绍: The scope of npj Quantum Information spans across all relevant disciplines, fields, approaches and levels and so considers outstanding work ranging from fundamental research to applications and technologies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信