Neuropharmacology最新文献

筛选
英文 中文
Effects and mechanisms of anterior thalamus nucleus deep brain stimulation for epilepsy: A scoping review of preclinical studies 丘脑前核深部脑刺激治疗癫痫的效果和机制:临床前研究综述。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-08-31 DOI: 10.1016/j.neuropharm.2024.110137
{"title":"Effects and mechanisms of anterior thalamus nucleus deep brain stimulation for epilepsy: A scoping review of preclinical studies","authors":"","doi":"10.1016/j.neuropharm.2024.110137","DOIUrl":"10.1016/j.neuropharm.2024.110137","url":null,"abstract":"<div><p>Deep brain stimulation (DBS) of the anterior nucleus of the thalamus (ANT) is a safe and effective intervention for the treatment of certain forms of epilepsy. In preclinical models, electrical stimulation of the ANT has antiepileptogenic effects but its underlying mechanisms remain unclear. In this review, we searched multiple databases for studies that described the effects and mechanisms of ANT low or high frequency stimulation (LFS or HFS) in models of epilepsy. Out of 289 articles identified, 83 were pooled for analysis and 34 were included. Overall, ANT DBS was most commonly delivered at high frequency to rodents injected with kainic acid, pilocarpine, or pentylenetetrazole. In most studies, this therapy increased the latency to the first spontaneous seizure and reduced the frequency of seizures by 20%–80%. Electrophysiology data suggested that DBS reduces the severity of electrographic seizures, decreases the duration and increases the threshold of afterdischarges, reduces the power of low-frequency and increase the power high-frequency bands. Mechanistic studies revealed that ANT DBS leads to a series of short- and long-term changes at multiple levels. Some of its anticonvulsant effects were proposed to occur via the modulation of serotonergic and adenosinergic transmission. The latter seems to be derived from the downregulation of adenosine kinase (ADK). ANT DBS was also shown to increase hippocampal levels of lactate, alter the expression of genes involved in calcium signaling, synaptic glutamate, and the NOD-like receptor signaling pathway. When delivered during status epilepticus or following the injection of convulsant agents, DBS was found to reduce the expression of proinflammatory cytokines and apoptosis. When administered chronically, ANT DBS increased the expression of proteins involved in axonal guidance, changed functional connectivity in limbic circuits, and increased the number of hippocampal cells in epileptic animals, suggesting a neuroprotective effect.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
HIV1 gp120 activates microglia via TLR2-nf-κb signaling to up-regulate inflammatory cytokine expression and induce neuropathic pain HIV1 gp120 通过 TLR2-NF-κB 信号激活小胶质细胞,从而上调炎性细胞因子的表达并诱发神经性疼痛。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-08-30 DOI: 10.1016/j.neuropharm.2024.110136
{"title":"HIV1 gp120 activates microglia via TLR2-nf-κb signaling to up-regulate inflammatory cytokine expression and induce neuropathic pain","authors":"","doi":"10.1016/j.neuropharm.2024.110136","DOIUrl":"10.1016/j.neuropharm.2024.110136","url":null,"abstract":"<div><p>HIV associated neuropathic pain (HANP) is a common complication of AIDS. Intrathecal injection of recombinant HIV-1 gp120 in mice is a well-known model. Previous RNA sequencing revealed spinal TLR2 acts as a differentially expressed gene in HANP mice. The spinal TLR2 is involved in HANP, but its role and <em>underlying</em> mechanism remains unclear. In this study the transcription, expression and distribution characteristics of TLR2 in the spinal cord of HANP male mice have been analyzed by qRT-PCR, Western blotting, and immunofluorescent staining. We found that TLR2 expression was upregulated in the spinal dorsal horn and mainly distributed in microglial cells, and blocking TLR2 relieved pain of HANP mice. Following stimulation by gp120 microglial cells upregulate TLR2 expression and become activated. The activation stimulates their differentiation into the M1 type, increasing IL-1β and TNF-α expression while inhibiting IL-10 expression. Silencing the <em>Tlr2</em> gene slows down the activation, polarization, and secretion of pro-inflammatory factors in microglial cells induced by gp120, and enhances the expression of anti-inflammatory factors. Further analysis of the impact of gp120 on downstream signaling pathways of TLR2 in microglial cells, including NF-κB, MAPK (p38MAPK, ERK, and JNK) and PI3K/AKT, revealed that TLR2-NF-κB signaling plays a crucial role in the activation and polarization of microglial cells by gp120. Activation of NF-κB signaling aggravates pain in HANP mice, while blocking it lightens pain. This data indicates that gp120, through the TLR2-NF-κB signaling, activates spinal microglial cells, promotes the secretion of inflammatory cytokines, leading to HANP. This provides new targets to develop drugs for HANP.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109941","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sex differences in the BTBR idiopathic mouse model of autism spectrum disorders: Behavioural and redox-related hippocampal alterations 自闭症谱系障碍 BTBR 特发性小鼠模型的性别差异:行为和氧化还原相关的海马体改变。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-08-30 DOI: 10.1016/j.neuropharm.2024.110134
{"title":"Sex differences in the BTBR idiopathic mouse model of autism spectrum disorders: Behavioural and redox-related hippocampal alterations","authors":"","doi":"10.1016/j.neuropharm.2024.110134","DOIUrl":"10.1016/j.neuropharm.2024.110134","url":null,"abstract":"<div><p>Autism spectrum disorders (ASD) are highly heterogeneous neurodevelopmental diseases. Epidemiological data report that males have been diagnosed with autism more frequently than females. However, recent studies hypothesize that females’ low incidence might be underestimated due to standard clinical measures of ASD behavioural symptoms, mostly derived from males. Indeed, up to now, ASD mouse models focused mainly on males, considering the prevalence of the diagnosis in that sex. Regarding ASD aetiopathogenesis, it has been recently reported that oxidative stress might be implicated in its onset and development, suggesting an association with ASD typical repetitive behaviours that still need to be disentangled. Here, we investigated possible behavioural and molecular sex-related differences by using the BTBR mouse model of idiopathic ASD. To this aim, animals were exposed to behavioural tests related to different ASD core symptoms and comorbidities, <em>i.e.</em> stereotyped repertoire, social dysfunctions, hyperlocomotion and risk-taking behaviours. Moreover, we analyzed hippocampal levels of pro-oxidant and anti-oxidant enzymes, together with biomarkers of oxidative stress and lipid peroxidation.</p><p>Our results showed that BTBR females did not display the same patterns for repetitive behaviours as the male counterpart. From a biomolecular point of view, we found an increase in oxidative stress and pro-oxidant enzymes, accompanied by deficient enzymatic anti-oxidant response, only in BTBR males compared to C57BL/6 male mice, while no differences were retrieved in females.</p><p>Overall, our study suggests that in females there is an urgent need to depict the distinct ASD symptomatology, accompanied by the identification of sex-specific pharmacological targets.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0028390824003034/pdfft?md5=d86f5a258c6d9560cc8b1b529e40b201&pid=1-s2.0-S0028390824003034-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
GPx1-ERK1/2-CREB pathway regulates the distinct vulnerability of hippocampal neurons to oxidative stress via modulating mitochondrial dynamics following status epilepticus 癫痫状态后,GPx1-ERK1/2-CREB通路通过调节线粒体动力学调节海马神经元对氧化应激的独特脆弱性。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-08-29 DOI: 10.1016/j.neuropharm.2024.110135
{"title":"GPx1-ERK1/2-CREB pathway regulates the distinct vulnerability of hippocampal neurons to oxidative stress via modulating mitochondrial dynamics following status epilepticus","authors":"","doi":"10.1016/j.neuropharm.2024.110135","DOIUrl":"10.1016/j.neuropharm.2024.110135","url":null,"abstract":"<div><p>Glutathione peroxidase-1 (GPx1) and cAMP/Ca<sup>2+</sup> responsive element (CRE)-binding protein (CREB) regulate neuronal viability by maintaining the redox homeostasis. Since GPx1 and CREB reciprocally regulate each other, it is likely that GPx1-CREB interaction may play a neuroprotective role against oxidative stress, which are largely unknown. Thus, we investigated the underlying mechanisms of the reciprocal regulation between GPx1 and CREB in the male rat hippocampus. Under physiological condition, L-buthionine sulfoximine (BSO)-induced oxidative stress increased GPx1 expression, extracellular signal-regulated kinase 1/2 (ERK1/2) activity and CREB serine (S) 133 phosphorylation in CA1 neurons, but not dentate granule cells (DGC), which were diminished by GPx1 siRNA, U0126 or CREB knockdown. GPx1 knockdown inhibited ERK1/2 and CREB activations induced by BSO. CREB knockdown also decreased the efficacy of BSO on ERK1/2 activation. BSO facilitated dynamin-related protein 1 (DRP1)-mediated mitochondrial fission in CA1 neurons, which abrogated by GPx1 knockdown and U0126. CREB knockdown blunted BSO-induced DRP1 upregulation without affecting DRP1 S616 phosphorylation ratio. Following status epilepticus (SE), GPx1 expression was reduced in CA1 neurons and DGC. SE also decreased CREB activity CA1 neurons, but not DGC. SE degenerated CA1 neurons, but not DGC, accompanied by mitochondrial elongation. These post-SE events were ameliorated by N-acetylcysteine (NAC, an antioxidant), but deteriorated by GPx1 knockdown. These findings indicate that a transient GPx1-ERK1/2-CREB activation may be a defense mechanism to protect hippocampal neurons against oxidative stress via maintenance of proper mitochondrial dynamics.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109940","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dopaminergic system and neurons: Role in multiple neurological diseases 多巴胺能系统和神经元:在多种神经系统疾病中的作用
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-08-27 DOI: 10.1016/j.neuropharm.2024.110133
{"title":"Dopaminergic system and neurons: Role in multiple neurological diseases","authors":"","doi":"10.1016/j.neuropharm.2024.110133","DOIUrl":"10.1016/j.neuropharm.2024.110133","url":null,"abstract":"<div><p>The dopaminergic system is a complex and powerful neurotransmitter system in the brain. It plays an important regulatory role in motivation, reward, cognition, and motor control. In recent decades, research in the field of the dopaminergic system and neurons has increased exponentially and is gradually becoming a point of intervention in the study and understanding of a wide range of neurological diseases related to human health. Studies have shown that the dopaminergic system and neurons are involved in the development of many neurological diseases (including, but not limited to Parkinson's disease, schizophrenia, depression, attention deficit hyperactivity disorder, etc.) and that dopaminergic neurons either have too much stress or too weak function in the dopaminergic system can lead to disease. Therefore, targeting dopaminergic neurons is considered key to treating these diseases. This article provides a comprehensive review of the dopaminergic system and neurons in terms of brain region distribution, physiological function and subtypes of dopaminergic neurons, as well as the role of the dopaminergic system and neurons in a variety of diseases.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142089304","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The PGC-1α/ERRα/ULK1 pathway contributes to Perioperative neurocognitive disorders by inducing mitochondrial dysfunction and activating NLRP3 inflammasome in aged mice PGC-1α/ERRα/ULK1通路通过诱导线粒体功能障碍和激活NLRP3炎症体导致老年小鼠围手术期神经认知障碍
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-08-27 DOI: 10.1016/j.neuropharm.2024.110119
{"title":"The PGC-1α/ERRα/ULK1 pathway contributes to Perioperative neurocognitive disorders by inducing mitochondrial dysfunction and activating NLRP3 inflammasome in aged mice","authors":"","doi":"10.1016/j.neuropharm.2024.110119","DOIUrl":"10.1016/j.neuropharm.2024.110119","url":null,"abstract":"<div><p>Perioperative neurocognitive disorders (PND) are intractable, indistinct, and considerably diminish the postoperative quality of life of patients. It has been proved that Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) was involved in neurodegenerative diseases by regulating mitochondrial biogenesis. The underlying mechanisms of PGC-1α and Nod-like receptor pyrin domain-containing protein 3 (NLRP3) inflammasome in PND are not well understood. In this study, we constructed a model of laparotomy in aged mice, and then examined the cognition changes with novel object recognition tests and fear condition tests. The protein levels of PGC-1α and NLRP3 in the hippocampus were detect after surgery. Our results showed that NLRP3 and downstream PI3K/AKT pathway expressions were augmented in the hippocampus after surgery, whereas, the expressions of PGC-1α/estrogen-related receptor α (ERRα)/Unc-51-like autophagy activating kinase 1 (ULK1) pathway were diminished after surgery. In addition, we found that NLRP3 was mainly co-localized with neurons in the hippocampus, and synaptic-related proteins were reduced after surgery. At the same time, transmission electron microscopy (TEM) showed that mitochondria were impaired after surgery. Pharmacological treatment of MCC950, a selective NLRP3 inhibitor, effectively alleviated PND. Activation of PGC-1α with ZLN005 significantly ameliorated PND by enhancing the PGC-1α/ERRα/ULK1 signaling pathway, and further suppressing NLRP3 activation. As a result, we conclude that suppression of the PGC-1α/ERRα/ULK1 signaling pathway is the primary mechanism of PND which caused mitochondrial dysfunction, and activated NLRP3 inflammasome and downstream PI3K/AKT pathway, eventually improved cognitive dysfunction.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142093573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Rapid reorganization of serotonin projections and antidepressant response to 5-HT1A-biased agonist NLX-101 in fluoxetine-resistant cF1ko mice 氟西汀耐药 cF1ko 小鼠血清素投射的快速重组和对 5-HT1A 偏激动剂 NLX-101 的抗抑郁反应
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-08-27 DOI: 10.1016/j.neuropharm.2024.110132
{"title":"Rapid reorganization of serotonin projections and antidepressant response to 5-HT1A-biased agonist NLX-101 in fluoxetine-resistant cF1ko mice","authors":"","doi":"10.1016/j.neuropharm.2024.110132","DOIUrl":"10.1016/j.neuropharm.2024.110132","url":null,"abstract":"<div><p>Selective serotonin (5-HT) reuptake inhibitors (SSRIs) like fluoxetine remain a first-line treatment for major depression, but are effective in less than half of patients and can take 4–8 weeks to show results. In this study, we examined cF1ko mice with genetically induced upregulation of 5-HT1A autoreceptors that reduces 5-HT neuronal activity. These mice display anxiety- and depression-related behaviors that did not respond to chronic fluoxetine treatment. We examined treatment with NLX-101, a biased agonist that preferentially targets 5-HT1A heteroreceptors. By testing different doses of NLX-101, we found that a dose of 0.2 mg/kg was effective in reducing depression-related behavior in cF1ko mice without causing hypothermia, a 5-HT1A autoreceptor-mediated response. After 1 h, this dose activated dorsal raphe 5-HT neurons and cells in the medial prefrontal cortex (mPFC), increasing nuclear c-fos labelling in cF1ko mice. In cF1ko mice but not wild-type littermates, 0.2 mg/kg NLX-101 administered 1 h prior to each behavioral test for two weeks reduced depressive behavior in the forced swim test, but increased anxiety-related behaviors in the open field, elevated plus maze, and novelty suppressed feeding tests. During this treatment, NLX-101 induced widespread increases in the density of 5-HT axons, varicosities, and especially synaptic and triadic structures, particularly in depression-related brain regions including mPFC, hippocampal CA1 and CA2/3, amygdala and nucleus accumbens of cF1ko mice. Overall, NLX-101 was rapid and effective in reducing depressive behavior in SSRI-resistant mice, but also induced anxiety-related behaviors. The increase in serotonin innervation induced by intermittent NLX-101 may contribute to its behavioral actions.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0028390824003010/pdfft?md5=72086ec5144c0e0728aebe4520c29492&pid=1-s2.0-S0028390824003010-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142109942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of four-week intranasal oxytocin administration on large-scale brain networks in older adults 连续四周鼻内注射催产素对老年人大规模大脑网络的影响
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-08-23 DOI: 10.1016/j.neuropharm.2024.110130
{"title":"Effects of four-week intranasal oxytocin administration on large-scale brain networks in older adults","authors":"","doi":"10.1016/j.neuropharm.2024.110130","DOIUrl":"10.1016/j.neuropharm.2024.110130","url":null,"abstract":"<div><p>Oxytocin (OT) is a crucial modulator of social cognition and behavior. Previous work primarily examined effects of acute intranasal oxytocin administration (IN-OT) in younger males on isolated brain regions. Not well understood are <em>(i)</em> chronic IN-OT effects, <em>(ii)</em> in older adults, <em>(iii)</em> on large-scale brain networks, representative of OT's wider-ranging brain mechanisms. To address these research gaps, 60 generally healthy older adults (mean age = 70.12 years, range = 55–83) were randomly assigned to self-administer either IN-OT or placebo twice daily via nasal spray over four weeks. Chronic IN-OT reduced resting-state functional connectivity (rs-FC) of both the right insula and the left middle cingulate cortex with the salience network but enhanced rs-FC of the left medial prefrontal cortex with the default mode network as well as the left thalamus with the basal ganglia–thalamus network. No significant chronic IN-OT effects were observed for between-network rs-FC. However, chronic IN-OT increased selective rs-FC of the basal ganglia–thalamus network with the salience network and the default mode network, indicative of more specialized, efficient communication between these networks. Directly comparing chronic vs. acute IN-OT, reduced rs-FC of the right insula with the salience network and between the default mode network and the basal ganglia–thalamus network, and greater selective rs-FC of the salience network with the default mode network and the basal ganglia–thalamus network, were more pronounced after chronic than acute IN-OT. Our results delineate the modulatory role of IN-OT on large-scale brain networks among older adults.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142056130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
MiR-184-3p in the paraventricular nucleus participates in the neurobiology of depression via regulation of the hypothalamus-pituitary-adrenal axis 室旁核中的 MiR-184-3p 通过调节下丘脑-垂体-肾上腺轴参与抑郁症的神经生物学。
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-08-22 DOI: 10.1016/j.neuropharm.2024.110129
{"title":"MiR-184-3p in the paraventricular nucleus participates in the neurobiology of depression via regulation of the hypothalamus-pituitary-adrenal axis","authors":"","doi":"10.1016/j.neuropharm.2024.110129","DOIUrl":"10.1016/j.neuropharm.2024.110129","url":null,"abstract":"<div><p>Hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis during chronic stress is essential for the pathogenesis of depression, and increased activity of cAMP response element binding protein (CREB)-regulated transcription co-activator 1 (CRTC1) in the paraventricular nucleus (PVN) plays a critical role. As a well-investigated microRNA (miRNA), miR-184 has two forms, miR-184-3p and miR-184-5p. Recently, miRNAs target genes predictive analysis and dual-luciferase reporter assays identified an inhibitory role of miR-184-3p on CRTC1 expression. Therefore, we speculated that miR-184-3p regulation was responsible for the effects of chronic stress on CRTC1 in the PVN. Various methods, including the chronic social defeat stress (CSDS) model of depression, behavioral tests, Western blotting, co-immunoprecipitation (Co-IP), quantitative real-time reverse transcription PCR (qRT-PCR), immunofluorescence, and adeno-associated virus (AAV)-mediated gene transfer, were used. CSDS evidently downregulated the level of miR-184-3p, but not miR-184-5p, in the PVN. Genetic knockdown and pharmacological inhibition of miR-184-3p in the PVN induced various depressive-like symptoms (e.g., abnormal behaviors, HPA hyperactivity, enhanced CRTC1 function in PVN neurons, downregulation of hippocampal neurogenesis, and decreased brain-derived neurotrophic factor (BDNF) signaling) in naïve male C57BL/6J mice. In contrast, genetic overexpression and pharmacological activation of miR-184-3p in the PVN produced significant beneficial effects against CSDS. MiR-184-3p in the PVN was necessary for the antidepressant actions of two well-known SSRIs, fluoxetine and paroxetine. Collectively. miR-184-3p was also implicated in the neurobiology of depression and may be a viable target for novel antidepressants.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046875","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioinformatics and validation reveal the potential target of curcumin in the treatment of diabetic peripheral neuropathy 生物信息学和验证揭示姜黄素治疗糖尿病周围神经病变的潜在靶点
IF 4.6 2区 医学
Neuropharmacology Pub Date : 2024-08-22 DOI: 10.1016/j.neuropharm.2024.110131
{"title":"Bioinformatics and validation reveal the potential target of curcumin in the treatment of diabetic peripheral neuropathy","authors":"","doi":"10.1016/j.neuropharm.2024.110131","DOIUrl":"10.1016/j.neuropharm.2024.110131","url":null,"abstract":"<div><p>Diabetic peripheral neuropathy (DPN) is a common nerve-damaging complication of diabetes mellitus. Effective treatments are needed to alleviate and reverse diabetes-associated damage to the peripheral nerves. Curcumin is an effective neuroprotectant that plays a protective role in DPN promoted by Schwann cells (SCs) lesions. However, the potential molecular mechanism of curcumin remains unclear. Therefore, our aim is to study the detailed molecular mechanism of curcumin-mediated SCs repair in order to improve the efficacy of curcumin in the clinical treatment of DPN. First, candidate target genes of curcumin in rat SC line RSC96 cells stimulated by high glucose were identified by RNA sequencing and bioinformatic analyses. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was carried out by Metascape, followed by 8 algorithms on Cytoscape to determine 4 hub genes, namly Hmox1, Pten, Vegfa and Myc. Next, gene set enrichment analysis (GSEA) and Pearson function showed that Hmox1 was significantly correlated with apoptosis. Subsequently, qRT-PCR, MTT assay, flow cytometry, caspase-3 activity detection and westernblot showed that curcumin treatment increased RSC96 cell viability, reduced cell apoptosis, increased Hmox1, Pten, Vegfa and Myc expression, and up-regulated Akt phosphorylation level under high glucose environment. Finally, molecular docking predicted the binding site of curcumin to Hmox1. These results suggest that curcumin can reduce the apoptosis of SCs induced by high glucose, and Hmox1 is a potential target for curcumin. Our findings provide new insights about the mechanism of action of curcumin on SC as a potential treatment in DPN.</p></div>","PeriodicalId":19139,"journal":{"name":"Neuropharmacology","volume":null,"pages":null},"PeriodicalIF":4.6,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142046874","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信