Neural PlasticityPub Date : 2022-10-04eCollection Date: 2022-01-01DOI: 10.1155/2022/3923384
Jiandong Sun, Yan Liu, Xiaoning Hao, Michel Baudry, Xiaoning Bi
{"title":"Lack of UBE3A-Mediated Regulation of Synaptic SK2 Channels Contributes to Learning and Memory Impairment in the Female Mouse Model of Angelman Syndrome.","authors":"Jiandong Sun, Yan Liu, Xiaoning Hao, Michel Baudry, Xiaoning Bi","doi":"10.1155/2022/3923384","DOIUrl":"10.1155/2022/3923384","url":null,"abstract":"<p><p>Angelman syndrome (AS) is a rare neurodevelopmental disorder characterized by severe developmental delay, motor impairment, language and cognition deficits, and often with increased seizure activity. AS is caused by deficiency of UBE3A, which is both an E3 ligase and a cofactor for transcriptional regulation. We previously showed that the small conductance potassium channel protein SK2 is a UBE3A substrate, and that increased synaptic SK2 levels contribute to impairments in synaptic plasticity and fear-conditioning memory, as inhibition of SK2 channels significantly improved both synaptic plasticity and fear memory in male AS mice. In the present study, we investigated UBE3a-mediated regulation of synaptic plasticity and fear-conditioning in female AS mice. Results from both western blot and immunofluorescence analyses showed that synaptic SK2 levels were significantly increased in hippocampus of female AS mice, as compared to wild-type (WT) littermates. Like in male AS mice, long-term potentiation (LTP) was significantly reduced while long-term depression (LTD) was enhanced at hippocampal CA3-CA1 synapses of female AS mice, as compared to female WT mice. Both alterations were significantly reduced by treatment with the SK2 inhibitor, apamin. The shunting effect of SK2 channels on NMDA receptor was significantly larger in female AS mice as compared to female WT mice. Female AS mice also showed impairment in both contextual and tone memory recall, and this impairment was significantly reduced by apamin treatment. Our results indicate that like male AS mice, female AS mice showed significant impairment in both synaptic plasticity and fear-conditioning memory due to increased levels of synaptic SK2 channels. Any therapeutic strategy to reduce SK2-mediated inhibition of NMDAR should be beneficial to both male and female patients.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"3923384"},"PeriodicalIF":3.1,"publicationDate":"2022-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9553421/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33509568","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Analysis of Muscular Electrical Activity and Blood Perfusion of Upper Extremity in Patients with Hemiplegic Shoulder Pain: A Pilot Study.","authors":"Minghong Sui, Naifu Jiang, Luhui Yan, Chenxi Zhang, Jiaqing Liu, Tiebin Yan, Guanglin Li","doi":"10.1155/2022/5253527","DOIUrl":"https://doi.org/10.1155/2022/5253527","url":null,"abstract":"<p><strong>Background: </strong>Hemiplegic shoulder pain (HSP) is a common symptom for post-stroke patients, which has a severely adverse impact on their rehabilitation outcomes. However, the cause of HSP has not been clearly identified due to its complicated multifactorial etiologies. As possible causes of HSP, the abnormality of both muscular electrical activity and blood perfusion remains lack of investigations.</p><p><strong>Objective: </strong>This study aimed to analyze the alteration of muscular electrical activity and blood perfusion of upper extremity in patients with HSP by using surface electromyography (sEMG) and laser speckle contrast imaging (LSCI) measurement techniques, which may provide some insight into the etiology of HSP.</p><p><strong>Methods: </strong>In this observational and cross-sectional study, three groups of participants were recruited. They were hemiplegic patients with shoulder pain (HSP group), hemiplegic patients without shoulder pain (HNSP group), and healthy participants (Healthy group). The sEMG data and blood perfusion data were collected from all the subjects and used to compute three different physiological measures, the root-mean-square (RMS) and median-frequency (MDF) parameters of sEMG recordings, and the perfusion unit (PU) parameter of blood perfusion imaging.</p><p><strong>Results: </strong>The RMS parameter of sEMG showed significant difference (<i>p</i> < 0.05) in the affected side between HSP, HNSP, and Healthy groups. The MDF parameter of sEMG and PU parameter of blood perfusion showed no significant difference in both sides among the three groups (<i>p</i> > 0.05). The RMS parameter of sEMG showed a statistically significant correlation with the pain intensity (<i>r</i> = -0.691, <i>p</i> =0.012).</p><p><strong>Conclusion: </strong>This study indicated that the muscular electrical activity of upper extremity had a correlation with the presence of HSP, and the blood perfusion seemed to be no such correlation. The findings of the study suggested an alternative way to explore the mechanism and treatment of HSP.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"5253527"},"PeriodicalIF":3.1,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9532142/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33490764","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2022-09-27eCollection Date: 2022-01-01DOI: 10.1155/2022/7432842
Karina Hernández Mercado, Araceli Martínez Moreno, Luis Francisco Rodríguez Durán, Martha L Escobar, Angélica Zepeda
{"title":"Progression in Time of Dentate Gyrus Granule Cell Layer Widening due to Excitotoxicity Occurs along In Vivo LTP Reinstatement and Contextual Fear Memory Recovery.","authors":"Karina Hernández Mercado, Araceli Martínez Moreno, Luis Francisco Rodríguez Durán, Martha L Escobar, Angélica Zepeda","doi":"10.1155/2022/7432842","DOIUrl":"10.1155/2022/7432842","url":null,"abstract":"<p><p>The dentate gyrus (DG) is the gateway of sensory information arriving from the perforant pathway (PP) to the hippocampus. The adequate integration of incoming information into the DG is paramount in the execution of hippocampal-dependent cognitive functions. An abnormal DG granule cell layer (GCL) widening due to granule cell dispersion has been reported under hyperexcitation conditions in animal models as well as in patients with mesial temporal lobe epilepsy, but also in patients with no apparent relation to epilepsy. Strikingly, it is unclear whether the presence and severity of GCL widening along time affect synaptic processing arising from the PP and alter the performance in hippocampal-mediated behaviors. To evaluate the above, we injected excitotoxic kainic acid (KA) unilaterally into the DG of mice and analyzed the evolution of GCL widening at 10 and 30 days post injection (dpi), while analyzing if KA-induced GCL widening affected in vivo long-term potentiation (LTP) in the PP-DG pathway, as well as the performance in learning and memory through contextual fear conditioning. Our results show that at 10 dpi, when a subtle GCL widening was observed, LTP induction, as well as contextual fear memory, were impaired. However, at 30 dpi when a pronounced increase in GCL widening was found, LTP induction and contextual fear memory were already reestablished. These results highlight the plastic potential of the DG to recover some of its functions despite a major structural alteration such as abnormal GCL widening.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"7432842"},"PeriodicalIF":3.1,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9533134/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33517675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2022-09-26eCollection Date: 2022-01-01DOI: 10.1155/2022/4714763
Yi Tang, Shuxing Zheng, Yin Tian
{"title":"Resting-State fMRI Whole Brain Network Function Plasticity Analysis in Attention Deficit Hyperactivity Disorder.","authors":"Yi Tang, Shuxing Zheng, Yin Tian","doi":"10.1155/2022/4714763","DOIUrl":"https://doi.org/10.1155/2022/4714763","url":null,"abstract":"<p><p>Attention deficit hyperactivity disorder (ADHD) is a common mental disorder in children, which is related to inattention and hyperactivity. These symptoms are associated with abnormal interactions of brain networks. We used resting-state functional magnetic resonance imaging (rs-fMRI) based on the graph theory to explore the topology property changes of brain networks between an ADHD group and a normal group. The more refined AAL_1024 atlas was used to construct the functional networks with high nodal resolution, for detecting more subtle changes in brain regions and differences among groups. We compared altered topology properties of brain network between the groups from multilevel, mainly including modularity at mesolevel. Specifically, we analyzed the similarities and differences of module compositions between the two groups. The results found that the ADHD group showed stronger economic small-world network property, while the clustering coefficient was significantly lower than the normal group; the frontal and occipital lobes showed smaller node degree and global efficiency between disease statuses. The modularity results also showed that the module number of the ADHD group decreased, and the ADHD group had short-range overconnectivity within module and long-range underconnectivity between modules. Moreover, modules containing long-range connections between the frontal and occipital lobes disappeared, indicating that there was lack of top-down control information between the executive control region and the visual processing region in the ADHD group. Our results suggested that these abnormal regions were related to executive control and attention deficit of ADHD patients. These findings helped to better understand how brain function correlates with the ADHD symptoms and complement the fewer modularity elaboration of ADHD research.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"4714763"},"PeriodicalIF":3.1,"publicationDate":"2022-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9529483/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33490412","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of Meaningful Action Observation Therapy on Occupational Performance, Upper Limb Function, and Corticospinal Excitability Poststroke: A Double-Blind Randomized Control Trial.","authors":"Aryan Shamili, Afsoon Hassani Mehraban, Akram Azad, Gholam Reza Raissi, Mohsen Shati","doi":"10.1155/2022/5284044","DOIUrl":"10.1155/2022/5284044","url":null,"abstract":"<p><strong>Introduction: </strong>Action observation therapy (AOT) is a mirror neuron-based approach that has been recently used in poststroke rehabilitation. The main goal of this study was to investigate the effectiveness of AOT of occupations and tasks that are meaningful for chronic stroke patients on occupational performance, upper-extremity function, and corticospinal changes.</p><p><strong>Method: </strong>A randomized control trial was designed to compare between experimental (<i>n</i> = 13) and control groups (<i>n</i> = 14). In both groups, the execution of meaningful tasks was practiced, but the videos of those tasks were just shown to the experiment group. Instead, patients in the control group watched nature videos as a placebo. Clinical outcomes were evaluated using the Canadian Occupational Performance Measure (COPM), Fugl-Meyer Assessment (FMA), Action Research Arm Test (ARAT), and Box-Block Test (BBT) on 3 occasions: baseline, post (at 4 weeks), and follow-up (at 8 weeks). The assessments of central motor conduction time (CMCT) for abductor policis brevis (APB) and extensor indicis (EI) were only recorded at baseline and posttreatment. Both assessors of clinical and neurophysiological outcomes were blinded to the allocation of subjects.</p><p><strong>Result: </strong>Finally, the results of outcomes in 24 patients who completed the study were analyzed. In both groups, significant improvements after treatment were seen for most outcomes (<i>p</i> ≤ 0.05). These changes were persistent until follow-up. There were significant differences in COPM performance (<i>p</i> = 0.03) and satisfaction (<i>p</i> = 0.001) between the experimental and control groups. In contrast, other clinical assessments such as FMA, ARAT, and BBT did not show significant differences between the two treatments (<i>p</i> ≥ 0.05). The results of CMCT related to APB showed a more significant change in the experiment group compared to the control group (<i>p</i> = 0.022). There was no difference in change detected between the two groups for CMCT related to EI after treatments.</p><p><strong>Conclusion: </strong>Observation and execution of meaningful activities can enhance the effects of simply practicing those activities on occupational performance/satisfaction and corticospinal excitability poststroke.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"5284044"},"PeriodicalIF":3.1,"publicationDate":"2022-09-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9507745/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33484503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Combined-Acupoint Electroacupuncture Induces Better Analgesia via Activating the Endocannabinoid System in the Spinal Cord.","authors":"Zhenhua Jiang, Yuheng Li, Qun Wang, Zongping Fang, Jiao Deng, Xinxin Zhang, Bowen Shen, Zhixin Wu, Qianzi Yang, Lize Xiong","doi":"10.1155/2022/7670629","DOIUrl":"https://doi.org/10.1155/2022/7670629","url":null,"abstract":"<p><p>Electroacupuncture (EA) therapy has been widely reported to alleviate neuropathic pain with few side effects in both clinical practice and animal studies worldwide. However, little is known about the comparison of the therapeutic efficacy among the diverse EA schemes used for neuropathic pain. The present study is aimed at investigating the therapeutic efficacy discrepancy between the single and combined-acupoint EA and to reveal the difference of mechanisms behind them. Electroacupuncture was given at both Zusanli (ST36) and Huantiao (GB30) in the combined group or ST36 alone in the single group. Paw withdrawal mechanical threshold (PWMT) was measured to determine the pain level. Electrophysiology was performed to detect the effects of EA on synaptic transmission in the spinal dorsal horn of the vGlut2-tdTomato mice. Spinal contents of endogenous opioids, endocannabinoids, and their receptors were examined. Inhibitors of CBR (cannabinoid receptor) and opioid receptors were used to study the roles of opioid and endocannabinoid system (ECS) in EA analgesia. We found that combined-acupoint acupuncture provide stronger analgesia than the single group did, and the former inhibited the synaptic transmission at the spinal level to a greater extent than later. Besides, the high-intensity stimulation at ST36 or normal stimulation at two sham acupoints did not mimic the similar efficacy of analgesia in the combined group. Acupuncture stimulation in single and combined groups both activated the endogenous opioid system. The ECS was only activated in the combined group. Naloxone totally blocked the analgesic effect of single-acupoint EA; however, it did not attenuate that of combined-acupoint EA unless coadministered with CBR antagonists. Hence, in the CCI-induced neuropathic pain model, combined-acupoint EA at ST36 and GB30 is more effective in analgesia than the single-acupoint EA at ST36. EA stimulation at GB30 alone neither provided a superior analgesic effect to EA treatment at ST36 nor altered the content of AEA, 2-AG, CB1 receptor, or CB2 receptor compared with the CCI group. Activation of the ECS is the main contributor of the better analgesia by the combined acupoint stimulation than that induced by single acupoint stimulation.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"7670629"},"PeriodicalIF":3.1,"publicationDate":"2022-09-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9499800/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33484502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2022-08-29eCollection Date: 2022-01-01DOI: 10.1155/2022/8057854
Jie Liu, Jingyao Huang, Zhenjiang Zhang, Rui Zhang, Zhihao Zhang, Yongxin Liu, Baoyu Ma
{"title":"Translocator Protein 18 kDa (TSPO) as a Novel Therapeutic Target for Chronic Pain.","authors":"Jie Liu, Jingyao Huang, Zhenjiang Zhang, Rui Zhang, Zhihao Zhang, Yongxin Liu, Baoyu Ma","doi":"10.1155/2022/8057854","DOIUrl":"https://doi.org/10.1155/2022/8057854","url":null,"abstract":"<p><p>Chronic pain is an enormous modern public health problem, with significant numbers of people debilitated by chronic pain from a variety of etiologies. Translocator protein 18 kDa (TSPO) was discovered in 1977 as a peripheral benzodiazepine receptor. It is a five transmembrane domain protein, mainly localized in the outer mitochondrial membrane. Recent and increasing studies have found changes in TSPO and its ligands in various chronic pain models. Reversing their expressions has been shown to alleviate chronic pain in these models, illustrating the effects of TSPO and its ligands. Herein, we review recent evidence and the mechanisms of TSPO in the development of chronic pain associated with peripheral nerve injury, spinal cord injury, cancer, and inflammatory responses. The cumulative evidence indicates that TSPO-based therapy may become an alternative strategy for treating chronic pain.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2022 ","pages":"8057854"},"PeriodicalIF":3.1,"publicationDate":"2022-08-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9444456/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"33447845","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2022-08-12eCollection Date: 2022-01-01DOI: 10.1155/2022/4416672
Xinglou Li, Meiling Luo, Yan Gong, Ning Xu, Congcong Huo, Hui Xie, Shouwei Yue, Zengyong Li, Yonghui Wang
{"title":"Altered Brain Activity and Effective Connectivity within the Nonsensory Cortex during Stimulation of a Latent Myofascial Trigger Point.","authors":"Xinglou Li, Meiling Luo, Yan Gong, Ning Xu, Congcong Huo, Hui Xie, Shouwei Yue, Zengyong Li, Yonghui Wang","doi":"10.1155/2022/4416672","DOIUrl":"https://doi.org/10.1155/2022/4416672","url":null,"abstract":"<p><p>Myofascial trigger point (MTrP), an iconic characteristic of myofascial pain syndrome (MPS), can induce cerebral cortex changes including altered cortical excitability and connectivity. The corresponding characteristically reactive cortex is still ambiguous. Seventeen participants with latent MTrPs underwent functional near-infrared spectroscopy (fNIRS) to collect cerebral oxygenation hemoglobin (<i>Δ</i>[oxy-Hb]) signals. The <i>Δ</i>[oxy-Hb] signals of the left/right prefrontal cortex (L/R PFC), left/right motor cortex (L/R MC), and left/right occipital lobe (L/R OL) of the subjects were measured using functional near-infrared spectroscopy (fNIRS) in the resting state, nonmyofascial trigger point (NMTrP), state and MTrP state. The data investigated the latent MTrP-induced changes in brain activity and effective connectivity (EC) within the nonsensory cortex. The parameter wavelet amplitude (WA) was used to describe cortical activation, EC to show brain network connectivity, and main coupling direction (mCD) to exhibit the dominant connectivity direction in different frequency bands. An increasing trend of WA and a decreasing trend of EC values were observed in the PFC. The interregional mCD was primarily shifted from a unidirectional to bidirectional connection, especially from PFC to MC or OL, when responding to manual stimulation during the MTrP state compared with resting state and NMTrP state in the intervals III, IV, and V. This study demonstrates that the nonsensory cortex PFC, MC, and OL can participate in the cortical reactions induced by stimulation of a latent MTrP. Additionally, the PFC shows nonnegligible higher activation and weakened regulation than other brain regions. Thus, the PFC may be responsible for the central cortical regulation of a latent MTrP. This trial is registered with ChiCTR2100048433.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":" ","pages":"4416672"},"PeriodicalIF":3.1,"publicationDate":"2022-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9391196/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40716123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Frequency Cerebellar rTMS Improves the Swallowing Function of Patients with Dysphagia after Brainstem Stroke.","authors":"Ling-Hui Dong, Xiaona Pan, Yuyang Wang, Guangtao Bai, Chao Han, Qiang Wang, Pingping Meng","doi":"10.1155/2022/6259693","DOIUrl":"https://doi.org/10.1155/2022/6259693","url":null,"abstract":"<p><strong>Objective: </strong>To explore the efficacy of high-frequency repetitive transcranial magnetic stimulation (rTMS) of the swallowing motor area of the cerebellum in patients with dysphagia after brainstem stroke.</p><p><strong>Methods: </strong>A total of 36 patients with dysphagia after brainstem stroke were recruited and divided into 3 groups. Before stimulation, single-pulse transcranial magnetic stimulation (TMS) was used to determine the swallowing dominant cerebellar hemisphere and the representation of the mylohyoid muscle. The three groups of patients received bilateral cerebellar sham stimulation, dominant cerebellar rTMS + contralateral sham stimulation, or bilateral cerebellar rTMS. The stimulus plan for each side was 10 Hz, 80% resting movement threshold (rMT), 250 pulses, 1 s per stimulus, and 9 s intervals. Sham rTMS was performed with the coil held at 90° to the scalp. The changes in the motor evoked potential (MEP) amplitude and the clinical swallowing function scales of the patients after stimulation were compared among the three groups.</p><p><strong>Results: </strong>34 patients were finally included for statistical analysis. The scores of penetration aspiration scale (PAS) and functional dysphagia scale (FDS) of the patients after 2 weeks of rTMS in the unilateral stimulation group and bilateral stimulation group were better than that in the sham stimulation group, and there was no significant difference between the two groups. The increase in the MEP amplitude of the cerebral hemisphere in the bilateral stimulation group was higher than that in the other two groups, and the increase in the MEP amplitude in the unilateral stimulation group was higher than that in sham stimulation group. There was no correlation between the improvement in patients' clinical swallowing function (PAS scores and FDS scores) and the increase in MEP amplitude in either the unilateral stimulation group or the bilateral stimulation group.</p><p><strong>Conclusion: </strong>High-frequency rTMS in the cerebellum can improve swallowing function in PSD patients and increase the excitability of the representation of swallowing in the bilateral cerebral hemispheres. Compared with unilateral cerebellar rTMS, bilateral stimulation increased the excitability of the cerebral swallowing cortex more significantly, but there was no significant difference in clinical swallowing function.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":" ","pages":"6259693"},"PeriodicalIF":3.1,"publicationDate":"2022-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9388260/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40716124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Neural PlasticityPub Date : 2022-07-30eCollection Date: 2022-01-01DOI: 10.1155/2022/7790730
Chunfang Wang, Yuanyuan Chen, Peiqing Song, Hongli Yu, Jingang Du, Ying Zhang, Changcheng Sun
{"title":"Varied Response of EEG Rhythm to Different tDCS Protocols and Lesion Hemispheres in Stroke Subjects with Upper Limb Dysfunction.","authors":"Chunfang Wang, Yuanyuan Chen, Peiqing Song, Hongli Yu, Jingang Du, Ying Zhang, Changcheng Sun","doi":"10.1155/2022/7790730","DOIUrl":"https://doi.org/10.1155/2022/7790730","url":null,"abstract":"<p><p>Transcranial direct current stimulation (tDCS) provides a way to modulate the cortical activity and promote motor rehabilitation following stroke. However, evidence indicates that the response to tDCS is highly variable. This study was aimed at exploring rhythmic response of Electroencephalography (EEG) to three tDCS protocols in stroke subjects. We hypothesize that tDCS protocols may interact with stoke characteristics, and electrode placement may affect cortical activity which could be reflected by the EEG rhythm. 32 subjects with unilateral stroke were recruited to a single-blinded, randomized, and controlled crossover experiment. All of the subjects underwent four tDCS protocols (anodal (atDCS), cathodal (ctDCS), and bilateral tDCS (bi-tDCS) and sham) with an interval of at least 1 week. Resting-state EEG was acquired before and after the stimulation. We tested the change of EEG spectral power after tDCS and the difference of change among four protocols using the paired-sample <i>t</i>-test and repeated measures analysis of variance. Then, we investigated the clinical factors affecting the above changes using the linear and quadratic regression model. According to the results, EEG responded to atDCS and bi-tDCS protocols on alpha and beta rhythm and subjects with a left lesion had higher response than those with the right lesion. Besides that, the change of alpha and beta power after atDCS and of beta power after bi-tDCS showed association with clinical characteristics only in subjects with the left lesion. In conclusion, the study found varied EEG response with different protocols, lesion hemispheres, and other clinical characteristics supporting the individualized cortical oscillatory effect induced by tDCS.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":" ","pages":"7790730"},"PeriodicalIF":3.1,"publicationDate":"2022-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9356883/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40704017","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}