Neural Plasticity最新文献

筛选
英文 中文
The Alterations in the Brain Corresponding to Low Back Pain: Recent Insights and Advances 与腰背痛相对应的大脑变化:最新见解与进展
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2024-03-18 DOI: 10.1155/2024/5599046
Xuyang Li, Fancheng Meng, Wenye Huang, Yue Cui, Fanbo Meng, Shengxi Wu, Hui Xu
{"title":"The Alterations in the Brain Corresponding to Low Back Pain: Recent Insights and Advances","authors":"Xuyang Li, Fancheng Meng, Wenye Huang, Yue Cui, Fanbo Meng, Shengxi Wu, Hui Xu","doi":"10.1155/2024/5599046","DOIUrl":"https://doi.org/10.1155/2024/5599046","url":null,"abstract":"Low back pain (LBP) is a leading cause of global disabilities. Numerous molecular, cellular, and anatomical factors are implicated in LBP. Current issues regarding neurologic alterations in LBP have focused on the reorganization of peripheral nerve and spinal cord, but neural mechanisms of exactly what LBP impacts on the brain required further researches. Based on existing clinical studies that chronic pain problems were accompanying alterations in brain structures and functions, researchers proposed logical conjectures that similar alterations occur in LBP patients as well. With recent extensive studies carried out using noninvasive neuroimaging technique, increasing number of abnormalities and alterations has been identified. Here, we reviewed brain alterations including white matters, grey matters, and neural circuits between brain areas, which are involved in chronic LBP. Moreover, brain structural and functional connectivity abnormalities are correlated to the happening and transition of LBP. The negative emotions related to back pain indicate possible alterations in emotional brain regions. Thus, the aim of this review is to summarize current findings on the alterations corresponding to LBP in the brain. It will not only further our understanding of etiology of LBP and understanding of negative emotions accompanying with back pain but also provide ideas and basis for new accesses to the diagnosis, treatment, and rehabilitation afterward based on integral medicine.","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"68 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140151164","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Electroacupuncture Therapy Effectively Protects the Rat Brain after Intracerebral Hemorrhage 电针疗法能有效保护脑出血后的大鼠大脑
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2024-02-15 DOI: 10.1155/2024/4784818
Li Huang, Xuehui Fan, Yao Chen, Heng Lin, Xiaoqian Jiang, Chaoxian Yang
{"title":"Electroacupuncture Therapy Effectively Protects the Rat Brain after Intracerebral Hemorrhage","authors":"Li Huang, Xuehui Fan, Yao Chen, Heng Lin, Xiaoqian Jiang, Chaoxian Yang","doi":"10.1155/2024/4784818","DOIUrl":"https://doi.org/10.1155/2024/4784818","url":null,"abstract":"<i>Objective</i>. Electroacupuncture (Ea) is a useful complementary and alternative therapy for intracerebral hemorrhage (ICH). However, the neurobiological basis for the Ea treatment of ICH is still unclear. The primary aim of the present study was to explore whether Ea prevents brain edema, apoptosis, excitotoxicity, and neuroinflammation in rats after hemorrhagic stroke. <i>Methods</i>. Rats were randomly divided into Sham, Control, and Ea groups. We used modified neurological severity score (mNSS) and gait analysis to estimate neurological function in rats, and PET/CT to assess glucose uptake and the hemorrhagic focus volume. Measurement of the brain water content and TUNEL staining were used to evaluate brain edema and cell apoptosis, respectively. The serum myelin basic protein (MBP), neuron-specific enolase (NSE), calcium-binding protein B (S100B), and tumor necrosis factor-<i>α</i> (TNF-<i>α</i>) concentrations were examined with ELISA. The expression levels of the CD68, GALC, Arg-1, iNOS, NR2A, Glu2R, AQP4, MAP2, GFAP, AQP9, Bcl-2, Bax, and Glu proteins around the hematoma were detected via immunohistochemistry staining. Western blot was used to analyze the levels of the AQP4, AQP9, Bax, Bcl-2, iNOS, and Arg-1 proteins. <i>Results</i>. Ea treatment improved neurological function and reduced the hemorrhagic area and brain water content in rats after ICH. The serum concentrations of MBP, NSE, S100B, and TNF-<i>α</i> all decreased significantly in the Ea group compared with the Control group. Expression levels of the Glu, NR2A, AQP4, AQP9, Bax, GFAP, iNOS, and CD68 proteins in brain tissue surrounding the hematoma were obviously suppressed in ICH rats following Ea treatment. Moreover, Ea stimulation increased the levels of the MAP2, GALC, Glu2R, Arg-1, and Bcl-2 proteins, but reduced the number of TUNEL-positive cells in rats after ICH. <i>Conclusion</i>. The results of this study suggest that Ea may exert neuroprotective effects by suppressing brain edema, apoptosis, excitotoxicity, and neuroinflammation.","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"31 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139770657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chronic Ultrasound Prenatal Stress Altered the Brain’s Neurochemical Systems in Newborn Rats 慢性超声产前应激改变了新生大鼠大脑的神经化学系统
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2024-02-13 DOI: 10.1155/2024/3829941
Olga Abramova, Yana Zorkina, Konstantin Pavlov, Valeria Ushakova, Anna Morozova, Eugene Zubkov, Olga Pavlova, Zinaida Storozheva, Olga Gurina, Vladimir Chekhonin
{"title":"Chronic Ultrasound Prenatal Stress Altered the Brain’s Neurochemical Systems in Newborn Rats","authors":"Olga Abramova, Yana Zorkina, Konstantin Pavlov, Valeria Ushakova, Anna Morozova, Eugene Zubkov, Olga Pavlova, Zinaida Storozheva, Olga Gurina, Vladimir Chekhonin","doi":"10.1155/2024/3829941","DOIUrl":"https://doi.org/10.1155/2024/3829941","url":null,"abstract":"Prenatal stress (PS) affects the development and functioning of the central nervous system, but the exact mechanisms underpinning this effect have not been pinpointed yet. A promising model of PS is one based on chronic exposure of pregnant rodents to variable-frequency ultrasound (US PS), as it mimics the PS with a psychic nature that most adequately captures the human stressors in modern society. The aim of this study was to investigate the effects of US PS on the brain neurotransmitter, neuropeptide, and neurotrophic systems of newborn Wistar rats. We determined the concentration of neurotransmitters and their metabolites (serotonin, HIAA, dopamine, DOPAC, and norepinephrine), neuropeptides (<i>α</i>-MSH, <i>β</i>-endorphin, neurotensin, oxytocin, and substance P), and the neurotrophin brain-derived neurotrophic factor (BDNF) in rat brain tissues by HPLC-ED, ELISA, and multiplex ELISA. Correlation analysis and principal component analysis (PCA) were used to get a sense of the relationship between the biochemical parameters of the brain. The results demonstrated that US PS increases the concentration of serotonin (<span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.973 11.7782\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.342,0)\"></path></g></svg><span></span><span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"22.555183800000002 -8.34882 28.184 11.7782\" width=\"28.184pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.605,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.845,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,31.809,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.049,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,44.289,0)\"></path></g></svg>)</span></span> and DOPAC (<span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.973 11.7782\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.342,0)\"><use xlink:href=\"#g117-34\"></use></g></svg><span></span><span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"22.555183800000002 -8.34882 21.921 11.7782\" width=\"21.921pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.605,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,28.845,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.809,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"31 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139770785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Retracted: Molecular Basis of GABA Hypofunction in Adolescent Schizophrenia-Like Animals 撤回:青少年类精神分裂症动物 GABA 功能减退的分子基础
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2024-01-24 DOI: 10.1155/2024/9780493
N. Plasticity
{"title":"Retracted: Molecular Basis of GABA Hypofunction in Adolescent Schizophrenia-Like Animals","authors":"N. Plasticity","doi":"10.1155/2024/9780493","DOIUrl":"https://doi.org/10.1155/2024/9780493","url":null,"abstract":"<jats:p />","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"9 4","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139600098","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Controlled Clinical Study of Accelerated High-Dose Theta Burst Stimulation in Patients with Obsessive–Compulsive Disorder 针对强迫症患者的加速大剂量θ脉冲刺激临床对照研究
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-12-07 DOI: 10.1155/2023/2741287
Jin Jiang, Ke Wan, Yueling Liu, Yan Tang, Wenxin Tang, Jian Liu, Jiehua Ma, Chuang Xue, Lu Chen, Huichang Qian, Dandan Liu, Xinxin Shen, Ruijuan Fan, Yongguang Wang, Kai Wang, Gongjun Ji, Chunyan Zhu
{"title":"A Controlled Clinical Study of Accelerated High-Dose Theta Burst Stimulation in Patients with Obsessive–Compulsive Disorder","authors":"Jin Jiang, Ke Wan, Yueling Liu, Yan Tang, Wenxin Tang, Jian Liu, Jiehua Ma, Chuang Xue, Lu Chen, Huichang Qian, Dandan Liu, Xinxin Shen, Ruijuan Fan, Yongguang Wang, Kai Wang, Gongjun Ji, Chunyan Zhu","doi":"10.1155/2023/2741287","DOIUrl":"https://doi.org/10.1155/2023/2741287","url":null,"abstract":"<i>Background</i>. Obsessive–compulsive disorder (OCD) is frequently treated using a combination of counseling, drugs, and, more recently various transcranial stimulation protocols, but all require several weeks to months for clinically significant improvement, so there is a need for treatments with faster onset. This study investigated whether an accelerated high-dose theta burst stimulation (ahTBS) protocol significantly improves the efficacy of OCD compared to traditional 1-Hz repetitive transcranial magnetic stimulation (rTMS) in the routine clinical setting. <i>Method</i>. Forty-five patients with OCD were randomized into two groups and treated with ahTBS or 1-Hz rTMS for 5 days. Patients were assessed at baseline at the end of treatment using the Yale–Brown Obsessive–Compulsive Scale (Y-BOCS). <i>Results</i>. After 5 days of treatment, there was a significant decrease in Y-BOCS scores in both groups (<span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.973 11.7782\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,11.342,0)\"></path></g></svg><span></span><span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"22.555183800000002 -8.34882 28.184 11.7782\" width=\"28.184pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.605,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,28.845,0)\"></path></g><g transform=\"matrix(.013,0,0,-0.013,31.809,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.049,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,44.289,0)\"></path></g></svg>),</span></span> and the difference between the two groups was not statistically significant (group × time interaction, <i>F</i> = 1.90, <span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"-0.0498162 -8.34882 18.973 11.7782\" width=\"18.973pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,0,0)\"><use xlink:href=\"#g113-113\"></use></g><g transform=\"matrix(.013,0,0,-0.013,11.342,0)\"></path></g></svg><span></span><span><svg height=\"11.7782pt\" style=\"vertical-align:-3.42938pt\" version=\"1.1\" viewbox=\"22.555183800000002 -8.34882 21.921 11.7782\" width=\"21.921pt\" xmlns=\"http://www.w3.org/2000/svg\" xmlns:xlink=\"http://www.w3.org/1999/xlink\"><g transform=\"matrix(.013,0,0,-0.013,22.605,0)\"><use xlink:href=\"#g113-49\"></use></g><g transform=\"matrix(.013,0,0,-0.013,28.845,0)\"><use xlink:href=\"#g113-47\"></use></g><g transform=\"matrix(.013,0,0,-0.013,31.809,0)\"><use xlink:href=\"#g113-50\"></use></g><g transform=\"matrix(.013,0,0,-0.013,38.049,0)\"></path></g></svg>).</span></span> There was also no statistically significant difference in other secondary ","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"27 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2023-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138546002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Premotor and Posterior Parietal Cortex Activity is Increased for Slow, as well as Fast Walking Poststroke: An fNIRS Study. 慢行和快走中风后运动前和后顶叶皮层活性增加:fNIRS研究。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-10-13 eCollection Date: 2023-01-01 DOI: 10.1155/2023/2403175
Shannon B Lim, Sue Peters, Chieh-Ling Yang, Lara A Boyd, Teresa Liu-Ambrose, Janice J Eng
{"title":"Premotor and Posterior Parietal Cortex Activity is Increased for Slow, as well as Fast Walking Poststroke: An fNIRS Study.","authors":"Shannon B Lim,&nbsp;Sue Peters,&nbsp;Chieh-Ling Yang,&nbsp;Lara A Boyd,&nbsp;Teresa Liu-Ambrose,&nbsp;Janice J Eng","doi":"10.1155/2023/2403175","DOIUrl":"10.1155/2023/2403175","url":null,"abstract":"<p><strong>Methods: </strong>Twenty individuals in the chronic stage of stroke walked: (1) at their normal pace, (2) slower than normal, and (3) as fast as possible. Functional near-infrared spectroscopy was used to assess bilateral prefrontal, premotor, sensorimotor, and posterior parietal cortices during walking.</p><p><strong>Results: </strong>No significant differences in laterality were observed between walking speeds. The ipsilesional prefrontal cortex was overall more active than the contralesional prefrontal cortex. Premotor and posterior parietal cortex activity were larger during slow and fast walking compared to normal-paced walking with no differences between slow and fast walking. Greater increases in brain activation in the ipsilesional prefrontal cortex during fast compared to normal-paced walking related to greater gait speed modulation.</p><p><strong>Conclusions: </strong>Brain activation is not linearly related to gait speed. Ipsilesional prefrontal cortex, bilateral premotor, and bilateral posterior parietal cortices are important areas for gait speed modulation and could be an area of interest for neurostimulation.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"2403175"},"PeriodicalIF":3.1,"publicationDate":"2023-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10589070/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49691643","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clinical Research Progress of the Post-Stroke Upper Limb Motor Function Improvement via Transcutaneous Auricular Vagus Nerve Stimulation. 经皮耳迷走神经刺激改善脑卒中后上肢运动功能的临床研究进展。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2023-09-25 eCollection Date: 2023-01-01 DOI: 10.1155/2023/9532713
Xiaolong Shi, Jingjun Zhao, Shutian Xu, Meng Ren, Yuwei Wu, Xixi Chen, Zhiqing Zhou, Songmei Chen, Yu Huang, Yuanli Li, Chunlei Shan
{"title":"Clinical Research Progress of the Post-Stroke Upper Limb Motor Function Improvement via Transcutaneous Auricular Vagus Nerve Stimulation.","authors":"Xiaolong Shi,&nbsp;Jingjun Zhao,&nbsp;Shutian Xu,&nbsp;Meng Ren,&nbsp;Yuwei Wu,&nbsp;Xixi Chen,&nbsp;Zhiqing Zhou,&nbsp;Songmei Chen,&nbsp;Yu Huang,&nbsp;Yuanli Li,&nbsp;Chunlei Shan","doi":"10.1155/2023/9532713","DOIUrl":"10.1155/2023/9532713","url":null,"abstract":"Stroke is a disease with high morbidity and disability, and motor impairment is a common sequela of stroke. Transcutaneous auricular vagus nerve stimulation (taVNS) is a type of non-invasive stimulation, which can effectively improve post-stroke motor dysfunction. This review discusses stimulation parameters, intervention timing, and the development of innovative devices for taVNS. We further summarize the application of taVNS in improving post-stroke upper limb motor function to further promote the clinical research and application of taVNS in the rehabilitation of post-stroke upper limb motor dysfunction.","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":"2023 ","pages":"9532713"},"PeriodicalIF":3.1,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10545466/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41156903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Self-Directed Neurofeedback Treatment for Subjective Tinnitus Patients Evaluated by Multimodal Functional Imaging. 多模态功能成像评价主观性耳鸣患者自我导向神经反馈治疗。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2022-10-18 eCollection Date: 2022-01-01 DOI: 10.1155/2022/5114721
Xiaoyan Ma, Fangyuan Wang, Chi Zhang, Weidong Shen, Shiming Yang
{"title":"Self-Directed Neurofeedback Treatment for Subjective Tinnitus Patients Evaluated by Multimodal Functional Imaging.","authors":"Xiaoyan Ma,&nbsp;Fangyuan Wang,&nbsp;Chi Zhang,&nbsp;Weidong Shen,&nbsp;Shiming Yang","doi":"10.1155/2022/5114721","DOIUrl":"https://doi.org/10.1155/2022/5114721","url":null,"abstract":"<p><p>Neurofeedback (NFB) is a relatively novel approach to the treatment of tinnitus, and prior studies have demonstrated that the increases in alpha activity rather than reduced delta power seem to drive these NFB-related improvements in tinnitus symptoms. The present study was therefore designed to explore whether the implementation of an alpha training protocol with a portable neurofeedback apparatus would achieve improvements in tinnitus patient symptoms. In this study, 38 tinnitus patients underwent NFB training while 18 were enrolled in a control group. The study was single-blinded such that only participants were not aware of their group assignments. Those in the NFB group underwent 15 NFB training sessions over 5 weeks, in addition to pre- and posttraining tests including the Tinnitus Handicap Inventory (THI), Tinnitus Handicap Questionnaire (THQ), visual analog scales (VAS), electroencephalography (EEG), and functional magnetic resonance imaging (fMRI). Our result find that when the THI, THQ, and VAS scores of patients in the two groups were assessed after a 5-week training period, these scores were unchanged in control patients whereas they had significantly improved in the NFB group patients. EEG analyses revealed that the alpha band was increased in the occipital lobe following NFB treatment, while fMRI indicated an increase in regional homogeneity (ReHo) in the right frontal lobe of patients in the NFB group after treatment that was negatively correlated with THI and VAS scores. The results of this analysis indicate that alpha NFB training can be effectively used to reduce tinnitus-related distress and sound perception in patients.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":" ","pages":"5114721"},"PeriodicalIF":3.1,"publicationDate":"2022-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9596274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40651365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The White Matter Functional Abnormalities in Patients with Transient Ischemic Attack: A Reinforcement Learning Approach. 短暂性脑缺血发作患者的白质功能异常:强化学习方法。
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2022-10-17 eCollection Date: 2022-01-01 DOI: 10.1155/2022/1478048
Huibin Ma, Zhou Xie, Lina Huang, Yanyan Gao, Linlin Zhan, Su Hu, Jiaxi Zhang, Qingguo Ding
{"title":"The White Matter Functional Abnormalities in Patients with Transient Ischemic Attack: A Reinforcement Learning Approach.","authors":"Huibin Ma, Zhou Xie, Lina Huang, Yanyan Gao, Linlin Zhan, Su Hu, Jiaxi Zhang, Qingguo Ding","doi":"10.1155/2022/1478048","DOIUrl":"10.1155/2022/1478048","url":null,"abstract":"<p><strong>Background: </strong>Transient ischemic attack (TIA) is a known risk factor for stroke. Abnormal alterations in the low-frequency range of the gray matter (GM) of the brain have been studied in patients with TIA. However, whether there are abnormal neural activities in the low-frequency range of the white matter (WM) in patients with TIA remains unknown. The current study applied two resting-state metrics to explore functional abnormalities in the low-frequency range of WM in patients with TIA. Furthermore, a reinforcement learning method was used to investigate whether altered WM function could be a diagnostic indicator of TIA.</p><p><strong>Methods: </strong>We enrolled 48 patients with TIA and 41 age- and sex-matched healthy controls (HCs). Resting-state functional magnetic resonance imaging (rs-fMRI) and clinical/physiological/biochemical data were collected from each participant. We compared the group differences between patients with TIA and HCs in the low-frequency range of WM using two resting-state metrics: amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF). The altered ALFF and fALFF values were defined as features of the reinforcement learning method involving a <i>Q</i>-learning algorithm.</p><p><strong>Results: </strong>Compared with HCs, patients with TIA showed decreased ALFF in the right cingulate gyrus/right superior longitudinal fasciculus/left superior corona radiata and decreased fALFF in the right cerebral peduncle/right cingulate gyrus/middle cerebellar peduncle. Based on these two rs-fMRI metrics, an optimal <i>Q</i>-learning model was obtained with an accuracy of 82.02%, sensitivity of 85.42%, specificity of 78.05%, precision of 82.00%, and area under the curve (AUC) of 0.87.</p><p><strong>Conclusion: </strong>The present study revealed abnormal WM functional alterations in the low-frequency range in patients with TIA. These results support the role of WM functional neural activity as a potential neuromarker in classifying patients with TIA and offer novel insights into the underlying mechanisms in patients with TIA from the perspective of WM function.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":" ","pages":"1478048"},"PeriodicalIF":3.1,"publicationDate":"2022-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9592236/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40650788","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Inhibition of Cerebral Ischemia/Reperfusion Injury by MSCs-Derived Small Extracellular Vesicles in Rodent Models: A Systematic Review and Meta-Analysis. 鼠模型中mscs来源的细胞外小泡对脑缺血/再灌注损伤的抑制作用:系统综述和荟萃分析
IF 3.1 4区 医学
Neural Plasticity Pub Date : 2022-10-06 eCollection Date: 2022-01-01 DOI: 10.1155/2022/3933252
Lei Zhang, Chaoying Pei, Dan Hou, Guoshuai Yang, Dan Yu
{"title":"Inhibition of Cerebral Ischemia/Reperfusion Injury by MSCs-Derived Small Extracellular Vesicles in Rodent Models: A Systematic Review and Meta-Analysis.","authors":"Lei Zhang,&nbsp;Chaoying Pei,&nbsp;Dan Hou,&nbsp;Guoshuai Yang,&nbsp;Dan Yu","doi":"10.1155/2022/3933252","DOIUrl":"https://doi.org/10.1155/2022/3933252","url":null,"abstract":"<p><p>Small extracellular vesicles (sEVs) secreted by mesenchymal stem cells (MSCs) have shown great therapeutic potential in cerebral ischemia-reperfusion injury (CIRI). In this study, we firstly performed a systematic review to evaluate the efficacy of MSCs-derived sEV for experimental cerebral ischemia/reperfusion injury. 24 studies were identified by searching 8 databases from January 2012 to August 2022. The methodological quality was assessed by using the SYRCLE 's risk of bias tool for animal studies. All the data were analyzed using RevMan 5.3 software. As a result, the score of study quality ranged from 3 to 9 in a total of ten points. Meta-analyses showed that MSCs-derived sEVs could effectively alleviate neurological impairment scores, reduced the volume of cerebral infarction and brain water content, and attenuated neuronal apoptosis. Additionally, the possible mechanisms of MSCs-derived sEVs for attenuating neuronal apoptosis were inhibiting microglia-mediated neuroinflammation. Thus, MSCs-derived sEVs might be regarded as a novel insight for cerebral ischemic stroke. However, further mechanistic studies, therapeutic safety, and clinical trials are required. Systematic review registration. PROSPERO CRD42022312227.</p>","PeriodicalId":19122,"journal":{"name":"Neural Plasticity","volume":" ","pages":"3933252"},"PeriodicalIF":3.1,"publicationDate":"2022-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9633211/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40668927","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信