{"title":"Author Correction: The multi-dimensional environmental impact of global crop commodities","authors":"Mark A. A. Jwaideh, Carole Dalin","doi":"10.1038/s41893-025-01553-5","DOIUrl":"10.1038/s41893-025-01553-5","url":null,"abstract":"","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 6","pages":"725-725"},"PeriodicalIF":27.1,"publicationDate":"2025-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41893-025-01553-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122689","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Fangzhou Yang, Xinlong Chen, Ge Qu, Quan Nie, Ganxiong Liu, Wang Wan, Tanyuan Wang, Sa Li, Yunhui Huang, Ju Li, Chao Wang
{"title":"Electrode separation via water electrolysis for sustainable battery recycling","authors":"Fangzhou Yang, Xinlong Chen, Ge Qu, Quan Nie, Ganxiong Liu, Wang Wan, Tanyuan Wang, Sa Li, Yunhui Huang, Ju Li, Chao Wang","doi":"10.1038/s41893-025-01539-3","DOIUrl":"10.1038/s41893-025-01539-3","url":null,"abstract":"Recycling large quantities of lithium-ion batteries facing retirement is pivotal for resource conservation and environmental sustainability. Direct recycling, while offering a promising avenue with reduced waste compared with pyrometallurgy and hydrometallurgy, often involves intricate and long processes. Here we introduce a water electrolysis-induced separation approach, using H2 or O2 gas bubbling to efficiently separate electrode materials from current collectors. The process achieves 99.5% materials recovery with metal impurities <40 ppm within 34 s for LiFePO4 and 3 s for graphite at 10 mA cm−2, with minimal energy consumption of 11 and 1.1 kJ kgcell−1. Moreover, this approach accommodates various electrode types, encompassing cathodes and anodes from spent batteries or manufacturing scraps. The subsequent dry electrode manufacturing process with lithium replenishment substantially enhances environmental sustainability by eliminating the use of N-methyl pyrrolidone, while maintaining performance through the effective mixing of active materials and conductive agents. An EverBatt analysis underscores a remarkable reduction in energy consumption and waste generation compared with industrially adopted recycling methods. This finding provides an efficient and sustainable solution for battery recycling while ensuring high-quality materials production. Current battery recycling processes face sustainability challenges. Using gas evolution in water electrolysis, this work realizes fast separation of active electrode materials from current collectors before their dry refabrication for electrodes without compromising performance.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 5","pages":"520-529"},"PeriodicalIF":27.1,"publicationDate":"2025-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Nanopore aligned, membrane redefined","authors":"Lei Xie, Biao Kong","doi":"10.1038/s41893-025-01540-w","DOIUrl":"10.1038/s41893-025-01540-w","url":null,"abstract":"Membranes supporting selective ion transport provide the opportunity to generate electricity from water sources with different salt concentrations. Now researchers report a strategy to align nanochannels in covalent organic framework membranes for unprecedented performance in osmotic energy harvesting.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 4","pages":"332-333"},"PeriodicalIF":27.1,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122781","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Stable and high-yield hydrogen peroxide electrosynthesis from seawater","authors":"Chaoqi Zhang, Pengyue Shan, Yingying Zou, Tong Bao, Xinchan Zhang, Zhijie Li, Yunying Wang, Guangfeng Wei, Chao Liu, Chengzhong Yu","doi":"10.1038/s41893-025-01538-4","DOIUrl":"10.1038/s41893-025-01538-4","url":null,"abstract":"Electrocatalytic two-electron oxygen reduction reaction (2e− ORR) in seawater offers a sustainable route for hydrogen peroxide (H2O2) production. However, due to the high concentration of Cl− ions and competitive 4e− ORR, there is a lack of efficient and long-term stable seawater electrocatalysts. Here we report a high-performance electrocatalyst design based on NiPS3 nanosheets enabling efficient H2O2 production from seawater. Specifically, the NiPS3 nanosheets deliver a 2e− ORR selectivity of ∼98%, a H2O2 yield of 6.0 mol gcat−1 h−1 and robust stability for over 1,000 h in simulated seawater. Underlying the exciting performance is the synergy of the S2−, Ni2+ and P4+ sites where the octahedral S2− skeleton repels Cl− ions, the Ni2+ sites enable the modest binding strength of *OOH intermediate, and the P4+ sites interact with H2O to trigger the protonation of proximal O atom of *OOH. The seawater electrocatalysis system also allows for scalable synthesis of solid H2O2, tandem oxidation reaction of biomass to organic acid and direct use of the produced H2O2 as a sterilizing agent. Once integrated with photovoltaics, the solar-powered electrolysis device can operate in real seawater. Our findings pave the way for sustainable conversion of seawater into value-added products. Hydrogen peroxide (H2O2) is a green oxidant with diverse applications. Aided by a nickel phosphorus trisulfide nanosheet electrocatalyst, this work shows a sustainable synthetic route to produce H2O2 from seawater with high yield and impressive stability.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 5","pages":"542-552"},"PeriodicalIF":27.1,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122751","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Photoelectrochemical production of disinfectants from seawater","authors":"Rui-Ting Gao, Zehua Gao, Nhat Truong Nguyen, Junxiang Chen, Xianhu Liu, Lei Wang, Limin Wu","doi":"10.1038/s41893-025-01530-y","DOIUrl":"10.1038/s41893-025-01530-y","url":null,"abstract":"Active chlorine, including HClO and ClO−, is one of the most extensively used disinfectants. However, it is mainly produced through energy-consuming three-step chlor-alkali electrolysis of saturated brine using Cl2 gases as intermediates. Here we report a photoelectrochemical synthetic pathway from natural seawater using a chloride-mediated NbClOx/BiVO4 photoanode. The photoanode presents an onset potential of 0.6 V versus a reversible hydrogen electrode (VRHE) and over 500 h of stability in seawater under one sun illumination. The faradaic efficiency and selectivity of hypochlorite are close to 100% at 1.2–1.8 VRHE with a yield of 119.9 ± 9 μmol cm−2 h−1 at 1.72 VRHE. Meanwhile, value-added products of Mg(OH)2 and CaCO3 are obtained on the cathode, accompanied by hydrogen production. Further analyses show that the present process reduces electricity consumption by 77.16% and CO2 emissions by 75.31%. Our findings suggest a strategy with combined safety, efficiency and economic feasibility for direct synthesis of active chlorine from seawater. Active chlorine is the most widely used water disinfectant, but its production has environmental consequences. This work shows a photoelectrochemical synthetic route using only solar energy and seawater.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 6","pages":"672-681"},"PeriodicalIF":27.1,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Owen Gaffney, Amy Luers, Franklin Carrero-Martinez, Berna Oztekin-Gunaydin, Felix Creutzig, Virginia Dignum, Victor Galaz, Naoko Ishii, Francesca Larosa, Maria Leptin, Ken Takahashi Guevara
{"title":"The Earth alignment principle for artificial intelligence","authors":"Owen Gaffney, Amy Luers, Franklin Carrero-Martinez, Berna Oztekin-Gunaydin, Felix Creutzig, Virginia Dignum, Victor Galaz, Naoko Ishii, Francesca Larosa, Maria Leptin, Ken Takahashi Guevara","doi":"10.1038/s41893-025-01536-6","DOIUrl":"10.1038/s41893-025-01536-6","url":null,"abstract":"At a time when the world must cut greenhouse gas emissions precipitously, artificial intelligence (AI) brings large opportunities and large risks. To address its uncertain environmental impact, we propose the ‘Earth alignment’ principle to guide AI development and deployment towards planetary stability.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 5","pages":"467-469"},"PeriodicalIF":27.1,"publicationDate":"2025-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122747","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Community-led rebuilding after the LA wildfires","authors":"Tamara Wall, Michele Steinberg, David Shew","doi":"10.1038/s41893-025-01531-x","DOIUrl":"10.1038/s41893-025-01531-x","url":null,"abstract":"","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 4","pages":"326-326"},"PeriodicalIF":27.1,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Confluence of fire and people","authors":"Timothy Brown, Jeff Shelton","doi":"10.1038/s41893-025-01541-9","DOIUrl":"10.1038/s41893-025-01541-9","url":null,"abstract":"","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 4","pages":"329-330"},"PeriodicalIF":27.1,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"From the ashes","authors":"","doi":"10.1038/s41893-025-01543-7","DOIUrl":"10.1038/s41893-025-01543-7","url":null,"abstract":"Wildfires in urban areas test our collective capacity not just for responsible land use and management, but also our social and political fabric for how we discuss and respond to these repeated disasters. A small collection of Correspondence articles in this issue provides some initial insights into what we can learn.","PeriodicalId":19056,"journal":{"name":"Nature Sustainability","volume":"8 4","pages":"325-325"},"PeriodicalIF":27.1,"publicationDate":"2025-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.nature.comhttps://www.nature.com/articles/s41893-025-01543-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145122783","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}