Molecular Plant-microbe Interactions最新文献

筛选
英文 中文
Xanthomonas oryzae pv. oryzae Type-III Effector Tal9b Targets a Broadly Conserved Disease Susceptibility Locus to Promote Pathogenesis in Rice. 米黄单胞菌。oryzae iii型效应物Tal9b靶向广泛保守的疾病易感位点促进水稻发病
IF 3.2 3区 生物学
Molecular Plant-microbe Interactions Pub Date : 2025-04-15 DOI: 10.1094/MPMI-10-24-0139-R
Gokulan C G, Sohini Deb, Namami Gaur, Apoorva Masade, Niranjan Gattu, Rennya P R, Nisha Sao, Donald James, Ramesh V Sonti, Hitendra K Patel
{"title":"<i>Xanthomonas oryzae</i> pv. <i>oryzae</i> Type-III Effector Tal9b Targets a Broadly Conserved Disease Susceptibility Locus to Promote Pathogenesis in Rice.","authors":"Gokulan C G, Sohini Deb, Namami Gaur, Apoorva Masade, Niranjan Gattu, Rennya P R, Nisha Sao, Donald James, Ramesh V Sonti, Hitendra K Patel","doi":"10.1094/MPMI-10-24-0139-R","DOIUrl":"https://doi.org/10.1094/MPMI-10-24-0139-R","url":null,"abstract":"<p><p><i>Xanthomonas oryzae</i> pv. <i>oryzae</i> (<i>Xoo</i>), the causal agent of bacterial blight of rice, translocates multiple Transcription Activator-Like Effectors (TALEs) into rice cells. The TALEs localize to the host cell nucleus, where they bind to the DNA in a sequence-specific manner and enhance gene expression to promote disease susceptibility. <i>Xoo</i> strain PXO99<sup>A</sup> encodes nineteen TALEs, but the host targets of all these TALEs have not been defined. A meta-analysis of rice transcriptome profiles revealed a gene annotated as flavonol synthase/flavanone-3 hydroxylase (henceforth <i>OsS5H</i>/<i>FNS-03g</i>) to be highly induced upon <i>Xoo</i> infection. Further analyses revealed that this gene is induced by PXO99<sup>A</sup> using Tal9b, a broadly conserved TALE of <i>Xoo</i>. Disruption of <i>tal9b</i> rendered PXO99<sup>A</sup> less virulent. OsS5H/FNS-03g functionally complemented its <i>Arabidopsis</i> homologue AtDMR6, a well-studied disease susceptibility locus. Biochemical analyses suggested that OsS5H/FNS-03g is a bifunctional protein with Salicylic Acid 5' Hydroxylase (S5H) and Flavone Synthase-I (FNS-I) activities. Further, an exogenous application of apigenin on rice leaves, the flavone that is enzymatically produced by OsS5H/FNS-03g, promoted virulence of PXO99<sup>A</sup> <i>tal9b</i>-. Overall, our study suggests that OsS5H/FNS-03g is a bifunctional enzyme and its product apigenin is potentially involved in promoting <i>Xoo</i> virulence.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144008653","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Differential Effects of Local dsRNA Application on Systemic Beet Mosaic Virus (BtMV) Resistance in Nicotiana benthamiana and Beta vulgaris. 局部应用dsRNA对烟叶和甜菜系统性抗BtMV的差异效应
IF 3.2 3区 生物学
Molecular Plant-microbe Interactions Pub Date : 2025-04-07 DOI: 10.1094/MPMI-01-25-0009-R
Dennis Rahenbrock, Marieke Bode, Mark Varrelmann
{"title":"Differential Effects of Local dsRNA Application on Systemic Beet Mosaic Virus (BtMV) Resistance in <i>Nicotiana benthamiana</i> and <i>Beta vulgaris</i>.","authors":"Dennis Rahenbrock, Marieke Bode, Mark Varrelmann","doi":"10.1094/MPMI-01-25-0009-R","DOIUrl":"https://doi.org/10.1094/MPMI-01-25-0009-R","url":null,"abstract":"<p><p>Beet mosaic virus (BtMV) is one of several viruses infecting sugar beets and was managed by controlling the vector <i>Myzus persicae</i> with neonicotinoid seed treatment. Following the ban of this measure in 2019 in Europe, alternative control strategies must be researched. One alternative might be the use of RNA interference (RNAi) as a major antiviral defence system. Here we report the selection of target regions using small RNA high throughput sequencing of BtMV infected <i>Beta vulgaris</i> subsp. <i>vulgaris</i> and <i>Nicotiana benthamiana</i> plants, the production of double-stranded RNA (dsRNA), and its effective use in inducing resistance against the mechanically inoculated virus. Both in <i>Escherichia coli</i> HT115 produced dsRNAs for BtMV P1 and nuclear inclusion body b (NIb) induced a high level of resistance, when sprayed before mechanical BtMV inoculation, resulting in an 80% reduction of symptomatic <i>B. vulgaris</i> and <i>N. benthamiana</i> plants. Stem-loop RT-qPCR showed the systemic distribution of dsRNA derived siRNA molecules, but the applied dsRNA remained at the site of application and did not spread within the plant. However, when the virus was inoculated on the next upward leaf to the dsRNA application site, no protective effect was observed. Despite this limitation, the results demonstrate the potential of dsRNA as an effective tool for viral protection in sugar beets, thereby establishing a basis for future developments in systemic delivery and broader field applications.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-04-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143795710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CRISPR/Cas9-Mediated Disruption of CsLIEXP1 Reveals Expansin as a Key Susceptibility Factor for Citrus Canker Disease. CRISPR/ cas9介导的CsLIEXP1断裂揭示扩张蛋白是柑橘溃疡病的关键易感因子
IF 3.2 3区 生物学
Molecular Plant-microbe Interactions Pub Date : 2025-04-02 DOI: 10.1094/MPMI-12-24-0151-R
Reinaldo Rodrigues de Souza-Neto, Lidia Nascimento Cavalcante, Isis Gabriela Barbosa Carvalho, Maiara Curtolo, Celso Eduardo Benedetti, Marco Aurelio Takita, Nian Wang, Alessandra Alves de Souza
{"title":"CRISPR/Cas9-Mediated Disruption of <i>CsLIEXP1</i> Reveals Expansin as a Key Susceptibility Factor for Citrus Canker Disease.","authors":"Reinaldo Rodrigues de Souza-Neto, Lidia Nascimento Cavalcante, Isis Gabriela Barbosa Carvalho, Maiara Curtolo, Celso Eduardo Benedetti, Marco Aurelio Takita, Nian Wang, Alessandra Alves de Souza","doi":"10.1094/MPMI-12-24-0151-R","DOIUrl":"https://doi.org/10.1094/MPMI-12-24-0151-R","url":null,"abstract":"<p><p>The <i>Citrus sinensis LATERAL ORGAN BOUNDERIES 1</i> (<i>CsLOB1</i>) gene, which is directly induced by the <i>Xanthomonas citri</i> subsp. <i>citri</i> effector PthA4, functions as a transcription factor and citrus canker susceptibility (S) gene. Genome editing of <i>CsLOB1</i> has been shown to confer resistance to citrus canker disease. Previous studies revealed that the citrus <i>CsLOB1-INDUCED EXPANSIN 1</i> gene (<i>CsLIEXP1</i>) is highly and directly upregulated by <i>CsLOB1</i> in <i>Xanthomonas citri</i> subsp. <i>citri</i>-infected plants. Because expansins are associated with cell wall loosening, potentially facilitating bacterial colonization, the <i>CsLOB1</i>-dependent activation of <i>CsLIEXP1</i> is thought to contribute to canker symptoms and disease progression. Thus, <i>CsLIEXP1</i> likely represents a critical canker susceptibility gene. In this study, we employed CRISPR/Cas9 to disrupt the function of <i>CsLIEXP1</i> by modifying its corresponding coding region in <i>Citrus sinensis</i> cv 'Hamlin' and evaluated the post-infection responses of edited plants. DNA sequencing confirmed edition of <i>CsLIEXP1</i>-edited plant, which exhibited 26.47% of <i>CsLIEXP1</i> edited sequences. Furthermore, <i>CsLIEXP1</i> protein accumulation was reduced in <i>CsLIEXP1</i>-edited plants compared to wild-type when infected with <i>X. citri</i>. Leaves of edited plants inoculated with <i>X. citri</i> showed significant less canker symptoms, with lesions limited to the site of bacterial inoculation and less pronounced cellular hypertrophy compared to control plants. Our results show that <i>CsLIEXP1</i> is a citrus canker S gene that acts downstream of <i>CsLOB1</i>, thus providing new insights into plant-pathogen interactions.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143772410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Potato Virus Y Restricts Alternaria solani Growth During Co-Infection. 马铃薯Y病毒在共侵染过程中抑制茄交菌生长。
IF 3.2 3区 生物学
Molecular Plant-microbe Interactions Pub Date : 2025-03-30 DOI: 10.1094/MPMI-03-25-0026-R
Pablo A Gutierrez, Joshua Fuller, Sydney Stroschein, Austin VanDenTop, Dennis Halterman, Aurelie M Rakotondrafara
{"title":"<i>Potato Virus Y</i> Restricts <i>Alternaria solani</i> Growth During Co-Infection.","authors":"Pablo A Gutierrez, Joshua Fuller, Sydney Stroschein, Austin VanDenTop, Dennis Halterman, Aurelie M Rakotondrafara","doi":"10.1094/MPMI-03-25-0026-R","DOIUrl":"https://doi.org/10.1094/MPMI-03-25-0026-R","url":null,"abstract":"<p><p>In the environment, multiple microbes can interact with each other in the plant phyllosphere. These associations can shape the plant's development, stress responses, and disease susceptibility, but the molecular mechanisms that govern this process remain unexplained. Of interest are the multiple or successive infections that crop plants are exposed to within a growing season. One of the most common and economically important viruses of potato is potato virus Y (PVY, <i>Potyviridae</i>). We show that PVY infection of potato limited the expansion of foliar necrotic lesions caused by the early blight fungus <i>Alternaria solani</i>. The reduced growth phenotype persisted when the fungal mycelium was transferred to solid growth media. RNAseq analysis of responses in potato and <i>A. solani</i> to the presence of PVY suggested two mechanisms that can explain this interaction. First, in <i>A. solani</i> exposed to PVY-positive leaves, we observed a down-regulation of fungal pathogenicity genes. Second, we found that, in the absence of PVY, <i>A. solani</i> downregulates ethylene-responsive defense in potato, but this effect was eliminated when the host was infected with PVY. Our findings expand our understanding of how pathogen virulence can be affected by other pathogens competing for the same host resources. The observation that PVY can alter <i>A. solani</i> infection illustrates the ecological role of viruses as a potential contributor to the development of disease outbreaks.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143753605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Alternaria alternata Mip1/RAPTOR Mediates Virulence by Regulating Toxin Production and Autophagy. 互交霉Mip1/RAPTOR通过调节毒素产生和自噬介导毒力。
IF 3.2 3区 生物学
Molecular Plant-microbe Interactions Pub Date : 2025-03-10 DOI: 10.1094/MPMI-12-24-0161-R
Yu-Ling Huang, Kuang-Ren Chung, Pei-Ching Wu
{"title":"The <i>Alternaria alternata</i> Mip1/RAPTOR Mediates Virulence by Regulating Toxin Production and Autophagy.","authors":"Yu-Ling Huang, Kuang-Ren Chung, Pei-Ching Wu","doi":"10.1094/MPMI-12-24-0161-R","DOIUrl":"https://doi.org/10.1094/MPMI-12-24-0161-R","url":null,"abstract":"<p><p>The necrotrophic pathogen <i>Alternaria alternata</i> produces a host-selective toxin to attack its host plants. This study characterized the crucial function of the Mip1/RAPTOR ortholog (AaMip1) in toxin production and autophagy formation. AaMip1 physically interacts with the Target of Rapamycin (Tor) protein. In response to nitrogen starvation and H<sub>2</sub>O<sub>2</sub>, AaMip1 binds to Tor and triggers autophagy and oxidative stress detoxification. Deleting the <i>AaMip1</i> gene resulted in a Δ<i>AaMip1</i> strain that increased sensitivity to various oxidants, decreased the expression of two oxidative-stress-response genes, <i>AaYap1</i> and <i>AaNoxA</i>, and had lower catalase activity than the wild type. Δ<i>AaMip1</i> produced lower levels of ACT toxin than the wild type after a 7-day incubation; however, Δ<i>AaMip1</i> produced tricycloalternarene mycotoxins but not ACT after 21 days. The reduction of Δ<i>AaMip1</i> virulence in the host plant is due to low ACT production, defective H<sub>2</sub>O<sub>2</sub> detoxification, impaired autophagy, and slow growth during invasion. However, AaMip1 plays a negative role in maintaining cell wall integrity and lipid body accumulation. Δ<i>AaMip1</i> had thicker cell walls and emitted brighter red fluorescence after staining with the cell-wall disrupting agents Congo red and calcofluor white. Δ<i>AaMip1</i> was more resistant to these compounds than the wild type under nutrient-rich conditions. The observed defects in the Δ<i>AaMip1</i> were restored in the complementation (CP) strain after re-expressing a functional copy of <i>AaMip1</i>. This study increases our understanding of how <i>A. alternata</i> deals with toxic ROS, triggers autophagy formation, maintains normal cell wall integrity, and regulates toxin metabolism via the AaMip1-mediated signaling pathways.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143584904","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Suppression of a Transketolase Mutation Leads to Only Partial Restoration of Symbiosis in Sinorhizobium meliloti. 抑制转酮醇酶突变只会部分恢复共生关系。
IF 3.2 3区 生物学
Molecular Plant-microbe Interactions Pub Date : 2025-03-10 DOI: 10.1094/MPMI-02-25-0017-R
Sabhjeet Kaur, Justin P Hawkins, Ivan J Oresnik
{"title":"Suppression of a Transketolase Mutation Leads to Only Partial Restoration of Symbiosis in <i>Sinorhizobium meliloti</i>.","authors":"Sabhjeet Kaur, Justin P Hawkins, Ivan J Oresnik","doi":"10.1094/MPMI-02-25-0017-R","DOIUrl":"https://doi.org/10.1094/MPMI-02-25-0017-R","url":null,"abstract":"<p><p>The interaction between <i>Sinorhizobium meliloti</i> and alfalfa is a well-studied model system for symbiotic establishment between rhizobia and legume plants. Proper utilization of carbon sources has been linked with effective symbiotic establishment in <i>S. meliloti</i> strain Rm1021. Previous work has shown that mutation of the gene <i>tktA</i>, which encodes a transketolase involved in the pentose phosphate pathway, resulted in a strain impaired in many biological functions, including the inability to establish a symbiosis with alfalfa. Work with this strain revealed the appearance of suppressor mutations which could partially revert the symbiotic phenotype associated with a <i>tktA</i> mutation. Characterization of these suppressor strains revealed that carbon phenotypes associated with a mutation in <i>tktA</i> were no longer present and that the production of succinoglycan was partially restored. Central carbon metabolite pools were observed to be different compared to the wildtype and <i>tktA</i> mutant strains. Multiple independent mutations were identified in the gene <i>SMc02340</i>, a Gnt-type negative regulator upon sequencing. RT-PCR suggests that <i>SMc02340</i> acts as a negative regulator on an operon containing the gene <i>tktB</i>, which becomes upregulated when the suppressor mutation is present or <i>SMc02340</i> is removed. Microscopic analysis revealed a unique symbiotic phenotype. The <i>tktA</i> mutant strain induced root hair curling but could not colonize the apoplastic space. Collectively the data suggests the upregulation of <i>tktB</i> can partially bypass some blocks associated with a lesion in <i>tktA</i>, including the colonization of the curled root hair, but cannot fully compensate for the loss of <i>tktA</i>.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-03-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143586344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cell Wall Dynamics in the Parasitic Plant (Striga) and Rice Pathosystem. 寄生植物(Striga)细胞壁动力学与水稻病理系统。
IF 3.2 3区 生物学
Molecular Plant-microbe Interactions Pub Date : 2025-03-01 Epub Date: 2025-04-14 DOI: 10.1094/MPMI-06-24-0064-FI
Damaris Barminga, Sylvia Mutinda, Fredrick M Mobegi, Willy Kibet, Brett Hale, Sylvester Anami, Asela Wijeratne, Emily S Bellis, Steven Runo
{"title":"Cell Wall Dynamics in the Parasitic Plant (<i>Striga</i>) and Rice Pathosystem.","authors":"Damaris Barminga, Sylvia Mutinda, Fredrick M Mobegi, Willy Kibet, Brett Hale, Sylvester Anami, Asela Wijeratne, Emily S Bellis, Steven Runo","doi":"10.1094/MPMI-06-24-0064-FI","DOIUrl":"10.1094/MPMI-06-24-0064-FI","url":null,"abstract":"<p><p>In the plant-plant pathosystem of rice (<i>Oryza sativa</i>) and the parasitic plant <i>Striga hermonthica</i>, cell walls from either plant are important defensive and offensive structures. Here, we reveal the cell wall dynamics in both <i>Striga</i> and rice using simultaneous RNA sequencing. We used weighted gene co-expression network analysis to home in on cell wall modification processes occurring in interactions with a resistant rice cultivar (Nipponbare) compared with a susceptible one (IAC 165). Likewise, we compared the cell wall dynamics in <i>Striga</i> infecting resistant and susceptible rice. Our study revealed an intense battlement at the <i>Striga-</i>rice cell walls involving both parasite (offense) and host (defense) factors, the outcome of which makes the difference between successful or failed parasitism. <i>Striga</i> activates genes encoding cell wall-degrading enzymes to gain access to the host, expansins to allow for cell elongation, and pectin methyl esterase inhibitors for rigidity during infection. In the susceptible host, immune response processes are not induced, and <i>Striga</i>-derived cell wall-degrading enzymes easily breach the host cell wall, resulting in successful parasitism. In contrast, the resistant host invokes immune responses modulated by phytohormones to fortify the cell wall through polysaccharides and lignin deposition. Through these processes, the cell wall of the resistant host successfully obstructs parasite entry. We discuss the implications of these findings in the context of practical agriculture in which cell wall modification can be used to manage parasitic plants. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":"285-296"},"PeriodicalIF":3.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142786100","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fine Grain: Molecular, Cellular, and Genomic Details of Cereal Crop Diseases. 精细谷物:谷物作物疾病的分子、细胞和基因组细节。
IF 3.2 3区 生物学
Molecular Plant-microbe Interactions Pub Date : 2025-03-01 DOI: 10.1094/MPMI-04-25-0040-CM
Lida Derevnina, Ksenia V Krasileva, Benjamin Schwessinger, Richard A Wilson
{"title":"Fine Grain: Molecular, Cellular, and Genomic Details of Cereal Crop Diseases.","authors":"Lida Derevnina, Ksenia V Krasileva, Benjamin Schwessinger, Richard A Wilson","doi":"10.1094/MPMI-04-25-0040-CM","DOIUrl":"https://doi.org/10.1094/MPMI-04-25-0040-CM","url":null,"abstract":"","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":"38 2","pages":"99-103"},"PeriodicalIF":3.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144019973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Molecular Monitoring of Fungicide Resistance in Crop Phytopathogens. 作物病原菌抗杀菌剂的分子监测。
IF 3.2 3区 生物学
Molecular Plant-microbe Interactions Pub Date : 2025-03-01 Epub Date: 2025-04-25 DOI: 10.1094/MPMI-09-24-0105-FI
Katherine G Zulak
{"title":"Molecular Monitoring of Fungicide Resistance in Crop Phytopathogens.","authors":"Katherine G Zulak","doi":"10.1094/MPMI-09-24-0105-FI","DOIUrl":"https://doi.org/10.1094/MPMI-09-24-0105-FI","url":null,"abstract":"<p><p>The fight against crop pathogens relies mainly on host genetics and chemistry; however, both areas are compromised by the evolution of resistance in the pathogen population. Fungicide resistance is an ongoing challenge to global food security, as it threatens these important crop protection chemistries. One critical component of resistance management is an effective detection and monitoring program, which needs to be agile, scalable, sensitive, accurate, and cost effective. A rapidly evolving suite of molecular tools are being developed for the detection of fungicide resistance mutations in phytopathogen populations, including high-throughput PCR-based quantitative assays and cutting-edge third-generation DNA sequencing. A single \"silver bullet\" detection technology that will satisfy all study objectives does not exist; thus, every tool has a niche in an integrated detection and monitoring program. This review presents an overview of the rapidly changing landscape of fungicide resistance detection, illustrates how molecular techniques are being exploited to combat fungicide resistance in cereal crop phytopathogens, and highlights challenges and future research directions to aid in the design of effective monitoring systems that aim to apply fungicides strategically and minimize the cost of resistance. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":"38 2","pages":"160-172"},"PeriodicalIF":3.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144045153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics. 从病变到教训:丝状植物病原体基因组学二十年。
IF 3.2 3区 生物学
Molecular Plant-microbe Interactions Pub Date : 2025-03-01 Epub Date: 2025-04-24 DOI: 10.1094/MPMI-09-24-0115-FI
Wagner C Fagundes, Yu-Seng Huang, Sophia Häußler, Thorsten Langner
{"title":"From Lesions to Lessons: Two Decades of Filamentous Plant Pathogen Genomics.","authors":"Wagner C Fagundes, Yu-Seng Huang, Sophia Häußler, Thorsten Langner","doi":"10.1094/MPMI-09-24-0115-FI","DOIUrl":"10.1094/MPMI-09-24-0115-FI","url":null,"abstract":"<p><p>Many filamentous microorganisms, such as fungi and oomycetes, have evolved the ability to colonize plants and cause devastating crop diseases. Coevolutionary conflicts with their hosts have shaped the genomes of these plant pathogens. Over the past 20 years, genomics and genomics-enabled technologies have revealed remarkable diversity in genome size, architecture, and gene regulatory mechanisms. Technical and conceptual advances continue to provide novel insights into evolutionary dynamics, diversification of distinct genomic compartments, and facilitated molecular disease diagnostics. In this review, we discuss how genomics has advanced our understanding of genome organization and plant-pathogen coevolution and provide a perspective on future developments in the field. [Formula: see text] Copyright © 2025 The Author(s). This is an open access article distributed under the CC BY 4.0 International license.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":"187-205"},"PeriodicalIF":3.2,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142984062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信