Nicholas C Cauldron, Caroline M Press, Alexandra J Weisberg, Marília Horta Jung, Tamara Corcobado, Joan F Webber, Koji Kageyama, Ayaka Hieno, Hayato Masuya, Seiji Uematsu, Bruno Scanu, Clive M Brasier, Thomas Jung, Jeff H Chang, Niklaus J Grünwald
Jana Sperschneider, Jian Chen, Claire Anderson, Emmanuelle Morin, Xiaoxiao Zhang, David Lewis, Eva Henningsen, Igor V Grigoriev, John P Rathjen, David A Jones, Sebastien Duplessis, Peter N Dodds
{"title":"A Chromosome-Scale Genome Assembly of the Flax Rust Fungus Reveals the Two Unusually Large Effector Proteins, AvrM3 and AvrN.","authors":"Jana Sperschneider, Jian Chen, Claire Anderson, Emmanuelle Morin, Xiaoxiao Zhang, David Lewis, Eva Henningsen, Igor V Grigoriev, John P Rathjen, David A Jones, Sebastien Duplessis, Peter N Dodds","doi":"10.1094/MPMI-04-25-0047-R","DOIUrl":"https://doi.org/10.1094/MPMI-04-25-0047-R","url":null,"abstract":"<p><p>Rust fungi comprise thousands of species many of which cause disease on important crop plants. The flax rust fungus <i>Melampsora lini</i> has been a model species for the genetic dissection of plant immunity since the 1940s, however the highly fragmented and incomplete reference genome has so far hindered progress in effector gene discovery. Here, we generate a fully-phased, chromosome-scale assembly of the two nuclear genomes of <i>M. lini</i> strain CH5, resolving an additional 320 Mbp of sequence. The 482 Mbp dikaryotic genome is at least 79% repetitive with a large proportion (~40%) of the genome comprised of young, highly similar transposable elements. The assembly resolves the known effector gene loci some of which carry complex duplications that were collapsed in the previous assembly. Using a genetic map followed by manual correction of gene models, we identify the <i>AvrM3</i> and <i>AvrN</i> genes which encode unusually large fungal effector proteins and trigger defense responses when co-expressed with the corresponding resistance genes. We locate the genes linked to the tetrapolar mating system on chromosomes 4 and 9, but in contrast to the cereal rusts which have one pheromone receptor gene per haplotype, in flax rust three pheromone receptor genes are found with two of them closely linked on one haplotype. Taken together, we show that a high-quality assembly is crucial for resolving complex gene loci and given the increasing number of fungal effectors of large size, the commonly applied criterion for effector candidates as being small proteins needs to be reconsidered.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144174188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melanie Mendel, Xander C L Zuijdgeest, Femke van den Berg, Leroy van der Meer, Joyce Elberse, Petros Skiadas, Michael F Seidl, Guido Van den Ackerveken, Ronnie de Jonge
{"title":"Exploiting <i>Pseudomonas syringae</i> Type 3 Secretion to Study Effector Contribution to Disease in Spinach.","authors":"Melanie Mendel, Xander C L Zuijdgeest, Femke van den Berg, Leroy van der Meer, Joyce Elberse, Petros Skiadas, Michael F Seidl, Guido Van den Ackerveken, Ronnie de Jonge","doi":"10.1094/MPMI-04-25-0042-R","DOIUrl":"https://doi.org/10.1094/MPMI-04-25-0042-R","url":null,"abstract":"<p><p>Intensive spinach cultivation creates favourable conditions for the emergence and rapid evolution of pathogens, leading to substantial economic losses. Research on host-pathogen interactions in leafy greens would benefit from advanced biotechnological tools, however absence of such tools in spinach hampers our understanding of spinach immunity. Here, we explored the potential of Type III Secretion System (T3SS)-mediated effector delivery to study pathogen effector activity in spinach. We identified the <i>Pseudomonas syringae</i> pv. <i>tomato</i> DC3000 (DC3000) polymutant D36E, which lacks 36 known T3SS effectors (T3Es), as a promising T3SS-dependent effector delivery system for spinach. Unlike DC3000, which causes necrotic symptoms on spinach and reaches high bacterial titres, D36E did not proliferate and caused no visible symptoms. Using D36E, we screened 28 DC3000 T3Es in spinach, assessing symptom development, bacterial proliferation, and reactive oxygen species (ROS) bursts as a proxy for early immune responses. AvrE1 and HopM1 emerged as key determinants of DC3000-like infection, inducing water-soaked lesions, while HopAD1 strongly suppressed ROS production. Our findings establish the D36E-based effector delivery system as a powerful tool for high-throughput effector studies in spinach. It bridges the gap between genomics-based effector predictions and experimental validation, paving the way for knowledge-driven resistance breeding in non-model crops like spinach.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144120353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas Rhoades, Todd A Naumann, Hye-Seon Kim, Gabdiel Yulfo-Soto, Susan McCormick, Michael J Bowman, Martha Vaughn, Guixia Hao
{"title":"An RGAE Homolog in <i>Fusarium graminearum</i> Is Critical for Initial Infection in Wheat and Barley.","authors":"Nicholas Rhoades, Todd A Naumann, Hye-Seon Kim, Gabdiel Yulfo-Soto, Susan McCormick, Michael J Bowman, Martha Vaughn, Guixia Hao","doi":"10.1094/MPMI-03-25-0027-R","DOIUrl":"https://doi.org/10.1094/MPMI-03-25-0027-R","url":null,"abstract":"<p><p><i>Fusarium graminearum</i> is the primary causal agent of Fusarium head blight (FHB), a devastating fungal disease on wheat, barley, and other grains. During infection, <i>F. graminearum</i> produces trichothecene mycotoxins, predominately deoxynivalenol (DON), which contaminate grain and reduce grain yield and quality. Although DON functions as a virulence factor to promote <i>F. graminearum</i> spread in the wheat head, it is not essential for establishing initial infection in wheat or barley. When fungal pathogens, such as <i>F. graminearum</i>, infect a host plant, they secrete hundreds of protein effectors that interfere with plant immunity to promote disease. A recent study identified hundreds of putative effector-encoding genes that are conserved across six <i>Fusarium</i> species. In the current study, we selected a subset of 50 conserved effectors from <i>F. graminearum</i> PH-1 and determined their expression on wheat heads over a seven-day infection period. Gene expression analysis revealed that several genes were highly induced in wheat heads during fungal infection. One of them was a putative rhamnogalacturonan acetylesterase homolog (<i>FgRGAE</i>), which was also highly induced in barley heads. FHB virulence assays showed that deletion mutants of <i>FgRGAE</i> significantly reduced initial infection and DON accumulation in wheat and barley heads compared to wild-type controls. Replacing the <i>FgRGAE::Hyg</i> deletion construct with a <i>FgRGAE<sup>ORF+</sup>::Gen</i> construct at the native locus restored FHB disease to wild-type levels in both wheat and barley heads. <i>FgRGAE</i> may serve as an ideal target to reduce FHB and mycotoxin contamination in wheat and barley.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144079140","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparative Transcriptomic and Microscopic Analyses of a Wild Wheat Relative Reveal Novel Mechanisms of Immune Suppression by the Pathogen <i>Zymoseptoria tritici</i>.","authors":"Rune Hansen, Wagner C Fagundes, Eva H Stukenbrock","doi":"10.1094/MPMI-11-24-0147-R","DOIUrl":"https://doi.org/10.1094/MPMI-11-24-0147-R","url":null,"abstract":"<p><p>The plant pathogenic fungus <i>Zymoseptoria tritici</i> is the causal agent of the devasting Septoria tritici blotch, a major wheat disease, with limited resistance genes identified. <i>Aegilops cylindrica</i>, a wild relative of wheat, is resistant to <i>Z. tritici</i> isolates originating from cultivated wheat but susceptible to <i>Z. tritici</i> isolates derived from <i>Aegilops</i> species. Therefore, <i>A. cylindrica</i> provides an intriguing model system to identify novel resistance genes against <i>Z. tritici</i>. We here integrated plant infection experiments, advanced microscopy and comparative transcriptome analyses to identify new putative resistance mechanisms against <i>Z. tritici</i>. We therefore constructed a de novo transcriptome assembly of <i>A. cylindrica</i> during compatible and incompatible plant-pathogen interactions across different infection stages using the two <i>Z. tritici</i> isolates Zt469 and IPO323. Our microscope analyses identify the substomatal cavity as a crucial checkpoint for <i>Z. tritici</i> infection where infection by incompatible isolates is aborted. In the compatible interaction, based on the transcriptome analyses, we reveal suppression of several key resistance-associated genes, including homologues of known resistance genes (e.g., <i>RPM1</i>- and <i>RPP13</i>-like) and certain pathogenesis related (PR) genes encoding various lipid transfer proteins (PR-14) and an apoplastic subtilisin-like protease <i>SBT3.6</i>-like (PR-7), none so far known to be involved in resistance towards <i>Z. tritici</i>. In the incompatible interaction we find a different set of upregulated genes compared to genes up-regulated in the immune response in resistant wheat cultivars. The de novo transcriptome assembly presented here provides a new valuable resource for wheat genetics and points novel immune pathways which may determine resistance against <i>Z. tritici</i>.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144028512","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Early Activation of RNAi Reveals Genomic Regions of Grapevine Red Blotch Virus Targeted for Silencing in Grapevine.","authors":"Christian Mandelli, Laurent G Deluc","doi":"10.1094/MPMI-04-25-0038-R","DOIUrl":"https://doi.org/10.1094/MPMI-04-25-0038-R","url":null,"abstract":"<p><p>Grapevine red blotch virus (GRBV), a member of the <i>Geminiviridae</i> family that causes reduced fruit quality and yield, is an emerging challenge for the wine industry. Viticultural practices and pest management have been largely ineffective at mitigating the impacts of GRBV, necessitating alternative control strategies. Here, we investigated the early activation of RNA interference (RNAi) in GRBV-infected grapevines and, through small RNA sequencing, identified nine genomic virus-derived small-interfering RNA (vsiRNA)-producing regions referred to as hotspots (HS). Subsequent analyses revealed that these HS were primarily involved in producing 24-nt vsiRNA species associated with transcriptional gene silencing towards later stages of infection. Double-stranded RNA (dsRNA) molecules derived from these HS were administered to GRBV-infected plants via root soaking, significantly (<i>p</i> < 0.05) reducing viral gene expression in leaves and petioles for up to one month. Ultimately, we assessed the potential of viral mutation within these HS, identified areas of higher mutational entropy, and found that most HS locations are within viral regions with lower probabilities of mutation events. These findings provide the basis for future research to characterize the role of small RNA (sRNA)-induced silencing mechanisms in grapevine-GRBV interactions and their potential translation for field-based technology like RNAi biopesticide to manage red blotch disease.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144011093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Cellular Responses in the Pigeonpea Wild Relative <i>Cajanus platycarpus</i> to <i>Helicoverpa armigera</i> Herbivory: The Role of Methionine Sulfoxide Reductase B1 (<i>CpMSRB1</i>) in Enhanced Defense.","authors":"Maniraj Rathinam, Narasimham Dokka, Kameshwaran Senthil, Shivangi Mahawar, Shaily Tyagi, Dineshkumar Rengarajan, Preethi Vijayaraghavareddy, Yuvaraj Iyyappan, Basavaraj Y B, Sandeep Reddy, Vinutha T, Rama Prashat G, Subodh Kumar Sinha, Prasanta K Dash, Sheshshayee Sreeman, Manoj Majee, Rohini Sreevathsa","doi":"10.1094/MPMI-11-24-0149-R","DOIUrl":"https://doi.org/10.1094/MPMI-11-24-0149-R","url":null,"abstract":"<p><p>Understanding key cellular mechanisms leading to improved defense against various stressors is essential for cultivating robust nutritious crops capable of flourishing in diverse environments. We present an in-depth characterization of the defense response in the pigeonpea wild relative, <i>Cajanus platycarpus</i>, to herbivory by pod borer, <i>Helicoverpa armigera</i>. To fight the attacking pest, <i>C. platycarpus</i> strategically activated non-enzymatic ROS scavengers and unleashed methionine sulfoxide reductases (MSRs) to safeguard the integrity of methionine residues. We unveiled for the first time physical interaction between <i>Cp</i>MSRB1 and chorismate mutase (<i>Cp</i>CM1.1), a pivotal player in the phenylpropanoid pathway (PP). This association fuelled the synthesis of phenylpropanoids and enhanced ROS scavenging crucial for repelling herbivores. Repairing <i>Cp</i>CM1.1 also boosted salicylic acid (SA) production, coordinating defense signaling with jasmonic acid (JA). Additionally, heterologous expression of <i>CpMSRB1</i> in tomato improved defense against herbivory by enhanced ROS scavenging and polyphenol production. This study demonstrates the role of <i>CpMSRB1</i> to protect a major enzyme in the shikimate pathway, reinforcing defense against <i>H. armigera</i>.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":" ","pages":""},"PeriodicalIF":3.2,"publicationDate":"2025-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144033188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}