Amelia H Lovelace, Chunxia Wang, Amit Levy, Wenbo Ma
{"title":"Transcriptomic profiling of '<i>Candidatus</i> Liberibacter asiaticus' in different citrus tissues reveals novel insights into Huanglongbing pathogenesis.","authors":"Amelia H Lovelace, Chunxia Wang, Amit Levy, Wenbo Ma","doi":"10.1094/MPMI-08-24-0102-R","DOIUrl":"https://doi.org/10.1094/MPMI-08-24-0102-R","url":null,"abstract":"<p><p>'<i>Candidatus</i> Liberibacter asiaticus' (Las) is a gram-negative bacterial pathogen associated with citrus huanglongbing (HLB) or greening disease. Las is transmitted by the Asian citrus psyllid (ACP) where it colonizes the phloem tissue, resulting in substantial economic losses to citrus industry worldwide. Despite extensive efforts, effective management strategies against HLB remain elusive, necessitating a deeper understanding of the pathogen's biology. Las undergoes cell-to-cell movement through phloem flow and colonizes different tissues in which Las may have varying interactions with the host. Here, we investigate the transcriptomic landscape of Las in citrus seed coat vasculatures, enabling a complete gene expression profiling of Las genome and revealing unique transcriptomic patterns compared to previous studies using midrib tissues. Comparative transcriptomics between seed coat, midrib and ACP identified specific responses and metabolic states of Las in different host tissue. Two Las virulence factors that exhibit higher expression in seed coat can suppress callose deposition. Therefore, they may contribute to unclogging sieve plate pores during Las colonization in seed coat vasculature. Furthermore, analysis of regulatory elements uncovers a potential role of LuxR-type transcription factors in regulating Liberibacter effector gene expression during plant colonization. Together, this work provides novel insights into the pathogenesis of the devastating citrus HLB.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-11-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142583864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
K M Martin, Y Chen, M A Mayfield, M Montero-Astua, A E Whitfield
{"title":"Visualizing tomato spotted wilt virus protein localization: Cross-kingdom comparisons of protein-protein interactions.","authors":"K M Martin, Y Chen, M A Mayfield, M Montero-Astua, A E Whitfield","doi":"10.1094/MPMI-09-24-0108-R","DOIUrl":"10.1094/MPMI-09-24-0108-R","url":null,"abstract":"<p><p>Tomato spotted wilt virus (TSWV) is an orthotospovirus that infects both plants and insect vectors. Understanding the protein localization and interactions is crucial for unraveling the infection cycle and host-virus interactions. We investigated and compared the localization of TSWV proteins. A change in localization over time was associated with the viral proteins that did not contain signal peptides and transmembrane domains such as N, NSs and NSm, however, this only occurred in the plant cells, not in the insect cells. The localization between plants and insects otherwise was consistent indicating a similar mechanism is utilized by the virus in both types of cells. We also tested the localization of the proteins during an active plant infection using free RFP as a marker to highlight the nucleus and cytoplasm. Voids in the cytoplasm were shown only during infection and N, NSs, NSm and to lesser extent, G<sub>N</sub> and G<sub>C</sub>, were surrounding these areas suggesting it may be a site of replication or morphogenesis. Furthermore, we tested the interactions of viral proteins using both bimolecular fluorescence complementation (BiFC) and membrane-based yeast two-hybrid (MbY2H) assays. These revealed self-interactions of NSm, N, G<sub>N</sub>, G<sub>C</sub>, and NSs. We also identified interactions between different TSWV proteins, indicating their roles and host interactions, such as between NSs and G<sub>C</sub> and N and G<sub>C</sub> which may be necessary during the replication and assembly processes respectively. This research expands our knowledge of TSWV infection and elaborates on the intricate relationships between viral proteins, cellular dynamics, and host responses.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142470489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mst Shamira Sultana, Daniel Niyikiza, Tracy E Hawk, Nicole Coffey, Valeria Lopes-Caitar, Alexander C Pfotenhauer, Hana El-Messidi, Chris Wyman, Vince Pantalone, Tarek Hewezi
{"title":"Differential transcriptome reprogramming induced by the soybean cyst nematode Type 0 and Type 1.2.5.7 during resistant and susceptible interactions.","authors":"Mst Shamira Sultana, Daniel Niyikiza, Tracy E Hawk, Nicole Coffey, Valeria Lopes-Caitar, Alexander C Pfotenhauer, Hana El-Messidi, Chris Wyman, Vince Pantalone, Tarek Hewezi","doi":"10.1094/MPMI-08-24-0092-R","DOIUrl":"10.1094/MPMI-08-24-0092-R","url":null,"abstract":"<p><p>Soybean cyst nematode (SCN, <i>Heterodera glycines</i>) is a serious root parasite of soybean (<i>Glycine max</i>) that induces extensive gene expression changes associated with pleiotropic biological activities in infected cells. However, the impacts of various SCN Hg Types on host transcriptome reprogramming remain largely unknown. Here, we developed and used two recombinant inbred lines (RIL-72 and RIL-137) to profile transcriptome reprogramming in the infection sites during the resistant and susceptible interactions with SCN Hg Type 1.2.5.7 and Type 0. SCN bioassays indicated that RIL-72 was susceptible to Type 1.2.5.7 but resistant to Type 0, whereas RIL-137 was resistant to both types. Comparative analysis of gene expression changes induced by Type 1.2.5.7 in the resistant and susceptible lines revealed distinct transcriptome regulation with a number of similarly and oppositely regulated genes. The expression levels of similarly regulated genes in the susceptible line appeared to be insufficient to mount an effective defense against SCN. The functional importance of oppositely regulated genes was confirmed using virus induced gene silencing and overexpression approaches. Further transcriptome comparisons revealed shared as well as Hg Type- and genotype-specific transcriptome reprogramming. Shared transcriptome responses were mediated through common SCN-responsive genes and conserved immune signaling, whereas genotype-specific responses were derived from genetic variability, metabolic and hormonal differences, and varied regulation of protein phosphorylation and ubiquitination. The conserved defense mechanisms together with genotype-specific responses would enable plants to trigger effective and tailored immune responses to various Hg types and adapt the defense response to their genetic backgrounds.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142400810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mustafa O Jibrin, Anuj Sharma, Carla N Mavian, Sujan Timilsina, Amandeep Kaur, Fernanda Iruegas-Bocardo, Neha Potnis, Gerald V Minsavage, Teresa A Coutinho, Tom C Creswell, Daniel S Egel, David M Francis, Misrak Kebede, Sally A Miller, María J Montelongo, Ekaterina Nikolaeva, María J Pianzzola, Olivier Pruvost, Alice M Quezado-Duval, Gail E Ruhl, Vou M Shutt, Elizabeth Maynard, Diego C Maeso, María I Siri, Cheryl L Trueman, Marco Salemi, Gary E Vallad, Pamela D Roberts, Jeffrey B Jones, Erica M Goss
Anuj Sharma, Fernanda Iruegas-Bocardo, Shaheen Bibi, Yun-Chu Chen, Jung-Gun Kim, Peter Abrahamian, Gerald V Minsavage, Jason C Hurlbert, Gary E Vallad, Mary B Mudgett, Jeffrey B Jones, Erica M Goss
{"title":"ZymoSoups: A high-throughput forward genetics method for rapid identification of virulence genes in <i>Zymoseptoria tritici</i>.","authors":"Haider Ali, Megan C McDonald, Graeme J Kettles","doi":"10.1094/MPMI-08-24-0082-TA","DOIUrl":"https://doi.org/10.1094/MPMI-08-24-0082-TA","url":null,"abstract":"<p><p>Septoria tritici blotch is caused by the fungus <i>Zymoseptoria tritici</i> and poses a major threat to wheat productivity. There are over twenty mapped loci in wheat that confer strong (gene-for-gene) resistance against this pathogen, however the corresponding genes in <i>Z. tritici</i> that confer virulence against distinct <i>R</i> genes remain largely unknown. In this study, we developed a rapid forward genetics methodology to identify genes that enable <i>Z. tritici</i> to gain virulence on previously resistant wheat varieties. We used the known gene-for-gene interaction between <i>Stb6</i> and <i>AvrStb6</i> as a proof-of-concept that this method could quickly recover single candidate virulence genes. We subjected the avirulent <i>Z. tritici</i> strain IPO323, which carries the recognized <i>AvrStb6</i> allele, to UV mutagenesis and generated a library of over 66,000 mutants. We screened these mutants on leaves of the resistant wheat variety Cadenza, in mixtures (soups) ranging from 100-500 mutants per soup. We identified five soups with a gain-of-virulence (GoV) phenotype relative to the IPO323 parental strain and re-sequenced 18 individual isolates, including four control isolates and two mutants lacking virulence, when screened individually. Of the 12 confirmed GoV mutants, one had a single nucleotide polymorphism (SNP) in the <i>AvrStb6</i> coding region. The other 11 GoV mutants exhibited large (~70Kb) deletions at the end of chromosome 5, including the <i>AvrStb6</i> locus. Our findings demonstrate the efficiency of this forward genetic approach in elucidating the genetic basis of qualitative resistance to <i>Z. tritici</i> and the potential to rapidly identify other, currently unknown, <i>Avr</i> genes in this pathogen.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"miR472 deficiency enhances <i>Arabidopsis thaliana</i> defense without reducing seed production.","authors":"Francois Vasseur, Patricia Baldrich, Tamara Jiménez-Góngora, Luis Villar-Martin, Detlef Weigel, Ignacio Rubio-Somoza","doi":"10.1094/MPMI-02-24-0011-R","DOIUrl":"https://doi.org/10.1094/MPMI-02-24-0011-R","url":null,"abstract":"<p><p>After having co-existed in plant genomes for at least 200 million years, the products of microRNA (miRNA) and Nucleotide-Binding Leucine Rich Repeat protein (NLR) genes formed a regulatory relationship in the common ancestor of modern gymnosperms and angiosperms. From then on, DNA polymorphisms occurring at miRNA target sequences within NLR transcripts must have been compensated by mutations in the corresponding mature miRNA sequence. The potential evolutionary advantage of such regulation remains largely unknown and might be related to two non-exclusive scenarios: miRNA-dependent regulation of NLR levels might prevent defense mis-activation with negative effects on plant growth and reproduction; or reduction of active miRNA levels in response to pathogen derived molecules (PAMPS and silencing suppressors) might rapidly release otherwise silent NLR transcripts for rapid translation and thereby enhance defense. Here, we used <i>Arabidopsis thaliana</i> plants deficient for miR472 function to study the impact of releasing its NLR targets on plant growth and reproduction and on defense against the fungal pathogen <i>Plectospharaella cucumerina</i>. We show that miR472 regulation has a dual role, participating both in the tight regulation of plant defense and growth. MIM472 lines, with reduced active miR472, are more resistant to pathogens and, correlatively, have reduced relative growth compared to wild-type plants although the end of their reproductive phase is delayed, exhibiting higher adult biomass and similar seed yield as the wild-type. Our study highlights how negative consequences of defense activation might be compensated by changes in phenology and that miR472 reduction is an integral part of plant defense responses.</p>","PeriodicalId":19009,"journal":{"name":"Molecular Plant-microbe Interactions","volume":null,"pages":null},"PeriodicalIF":3.2,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142350547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}