Molecular Microbiology最新文献

筛选
英文 中文
An Extracellular, Ca2+‐Activated Nuclease (EcnA) Mediates Transformation in a Naturally Competent Archaeon 细胞外 Ca2+ 激活的核酸酶(EcnA)介导自然能力古菌的转化
IF 3.6 2区 生物学
Molecular Microbiology Pub Date : 2024-08-31 DOI: 10.1111/mmi.15311
Dallas R. Fonseca, Leslie A. Day, Kathryn K. Crone, Kyle C. Costa
{"title":"An Extracellular, Ca2+‐Activated Nuclease (EcnA) Mediates Transformation in a Naturally Competent Archaeon","authors":"Dallas R. Fonseca, Leslie A. Day, Kathryn K. Crone, Kyle C. Costa","doi":"10.1111/mmi.15311","DOIUrl":"https://doi.org/10.1111/mmi.15311","url":null,"abstract":"Transformation, the uptake of DNA directly from the environment, is a major driver of gene flow in microbial populations. In bacteria, DNA uptake requires a nuclease that processes dsDNA to ssDNA, which is subsequently transferred into the cell and incorporated into the genome. However, the process of DNA uptake in archaea is still unknown. Previously, we cataloged genes essential to natural transformation in <jats:italic>Methanococcus maripaludis</jats:italic>, but few homologs of bacterial transformation‐associated genes were identified. Here, we characterize one gene, MMJJ_16440 (named here as <jats:italic>ecnA</jats:italic>), to be an extracellular nuclease. We show that EcnA is Ca<jats:sup>2+</jats:sup>‐activated, present on the cell surface, and essential for transformation. While EcnA can degrade several forms of DNA, the highest activity was observed with ssDNA as a substrate. Activity was also observed with circular dsDNA, suggesting that EcnA is an endonuclease. This is the first biochemical characterization of a transformation‐associated protein in a member of the archaeal domain and suggests that both archaeal and bacterial transformation initiate in an analogous fashion.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":3.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
In vivo assembly of bacterial partition condensates on circular supercoiled and linear DNA. 细菌在环形超卷曲 DNA 和线性 DNA 上的活体分区凝聚体组装。
IF 2.6 2区 生物学
Molecular Microbiology Pub Date : 2024-08-07 DOI: 10.1111/mmi.15297
Hicham Sekkouri Alaoui, Valentin Quèbre, Linda Delimi, Jérôme Rech, Roxanne Debaugny-Diaz, Delphine Labourdette, Manuel Campos, François Cornet, Jean-Charles Walter, Jean-Yves Bouet
{"title":"In vivo assembly of bacterial partition condensates on circular supercoiled and linear DNA.","authors":"Hicham Sekkouri Alaoui, Valentin Quèbre, Linda Delimi, Jérôme Rech, Roxanne Debaugny-Diaz, Delphine Labourdette, Manuel Campos, François Cornet, Jean-Charles Walter, Jean-Yves Bouet","doi":"10.1111/mmi.15297","DOIUrl":"https://doi.org/10.1111/mmi.15297","url":null,"abstract":"<p><p>In bacteria, faithful DNA segregation of chromosomes and plasmids is mainly mediated by ParABS systems. These systems, consisting of a ParA ATPase, a DNA binding ParB CTPase, and centromere sites parS, orchestrate the separation of newly replicated DNA copies and their intracellular positioning. Accurate segregation relies on the assembly of a high-molecular-weight complex, comprising a few hundreds of ParB dimers nucleated from parS sites. This complex assembles in a multi-step process and exhibits dynamic liquid-droplet properties. Despite various proposed models, the complete mechanism for partition complex assembly remains elusive. This study investigates the impact of DNA supercoiling on ParB DNA binding profiles in vivo, using the ParABS system of the plasmid F. We found that variations in DNA supercoiling does not significantly affect any steps in the assembly of the partition complex. Furthermore, physical modeling, leveraging ChIP-seq data from linear plasmids F, suggests that ParB sliding is restricted to approximately 2 Kbp from parS, highlighting the necessity for additional mechanisms beyond ParB sliding over DNA for concentrating ParB into condensates nucleated at parS. Finally, explicit simulations of a polymer coated with bound ParB suggest a dominant role for ParB-ParB interactions in DNA compaction within ParB condensates.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141897798","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Chromatin and gene regulation in archaea. 古细菌中的染色质和基因调控。
IF 2.6 2区 生物学
Molecular Microbiology Pub Date : 2024-08-03 DOI: 10.1111/mmi.15302
Fabian Blombach, Finn Werner
{"title":"Chromatin and gene regulation in archaea.","authors":"Fabian Blombach, Finn Werner","doi":"10.1111/mmi.15302","DOIUrl":"https://doi.org/10.1111/mmi.15302","url":null,"abstract":"<p><p>The chromatinisation of DNA by nucleoid-associated proteins (NAPs) in archaea 'formats' the genome structure in profound ways, revealing both striking differences and analogies to eukaryotic chromatin. However, the extent to which archaeal NAPs actively regulate gene expression remains poorly understood. The dawn of quantitative chromatin mapping techniques and first NAP-specific occupancy profiles in different archaea promise a more accurate view. A picture emerges where in diverse archaea with very different NAP repertoires chromatin maintains access to regulatory motifs including the gene promoter independently of transcription activity. Our re-analysis of genome-wide occupancy data of the crenarchaeal NAP Cren7 shows that these chromatin-free regions are flanked by increased Cren7 binding across the transcription start site. While bacterial NAPs often form heterochromatin-like regions across islands with xenogeneic genes that are transcriptionally silenced, there is little evidence for similar structures in archaea and data from Haloferax show that the promoters of xenogeneic genes remain accessible. Local changes in chromatinisation causing wide-ranging effects on transcription restricted to one chromosomal interaction domain (CID) in Saccharolobus islandicus hint at a higher-order level of organisation between chromatin and transcription. The emerging challenge is to integrate results obtained at microscale and macroscale, reconciling molecular structure and function with dynamic genome-wide chromatin landscapes.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Post-translational modification by the Pgf glycosylation machinery modulates Streptococcus mutans OMZ175 physiology and virulence. Pgf糖基化机制的翻译后修饰可调节变形链球菌OMZ175的生理和毒力。
IF 2.6 2区 生物学
Molecular Microbiology Pub Date : 2024-08-01 Epub Date: 2023-11-16 DOI: 10.1111/mmi.15190
Nicholas de Mojana di Cologna, Silke Andresen, Sandip Samaddar, Stephanie Archer-Hartmann, Ashley Marie Rogers, Jessica K Kajfasz, Tridib Ganguly, Bruna A Garcia, Irene Saengpet, Alexandra M Peterson, Parastoo Azadi, Christine M Szymanski, José A Lemos, Jacqueline Abranches
{"title":"Post-translational modification by the Pgf glycosylation machinery modulates Streptococcus mutans OMZ175 physiology and virulence.","authors":"Nicholas de Mojana di Cologna, Silke Andresen, Sandip Samaddar, Stephanie Archer-Hartmann, Ashley Marie Rogers, Jessica K Kajfasz, Tridib Ganguly, Bruna A Garcia, Irene Saengpet, Alexandra M Peterson, Parastoo Azadi, Christine M Szymanski, José A Lemos, Jacqueline Abranches","doi":"10.1111/mmi.15190","DOIUrl":"10.1111/mmi.15190","url":null,"abstract":"<p><p>Streptococcus mutans is commonly associated with dental caries and the ability to form biofilms is essential for its pathogenicity. We recently identified the Pgf glycosylation machinery of S. mutans, responsible for the post-translational modification of the surface-associated adhesins Cnm and WapA. Since the four-gene pgf operon (pgfS-pgfM1-pgfE-pgfM2) is part of the S. mutans core genome, we hypothesized that the scope of the Pgf system goes beyond Cnm and WapA glycosylation. In silico analyses and tunicamycin sensitivity assays suggested a functional overlap between the Pgf machinery and the rhamnose-glucose polysaccharide synthesis pathway. Phenotypic characterization of pgf mutants (ΔpgfS, ΔpgfE, ΔpgfM1, ΔpgfM2, and Δpgf) revealed that the Pgf system is important for biofilm formation, surface charge, membrane stability, and survival in human saliva. Moreover, deletion of the entire pgf operon (Δpgf strain) resulted in significantly impaired colonization in a rat oral colonization model. Using Cnm as a model, we showed that Cnm is heavily modified with N-acetyl hexosamines but it becomes heavily phosphorylated with the inactivation of the PgfS glycosyltransferase, suggesting a crosstalk between these two post-translational modification mechanisms. Our results revealed that the Pgf machinery contributes to multiple aspects of S. mutans pathobiology that may go beyond Cnm and WapA glycosylation.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Construing the function of N-terminal domain of D29 mycobacteriophage LysA endolysin in phage lytic efficiency and proliferation. 解读 D29 分枝杆菌噬菌体 LysA 内溶解素 N 端结构域在噬菌体溶菌效率和增殖中的功能。
IF 2.6 2区 生物学
Molecular Microbiology Pub Date : 2024-08-01 Epub Date: 2024-07-12 DOI: 10.1111/mmi.15295
Rutuja Gangakhedkar, Vikas Jain
{"title":"Construing the function of N-terminal domain of D29 mycobacteriophage LysA endolysin in phage lytic efficiency and proliferation.","authors":"Rutuja Gangakhedkar, Vikas Jain","doi":"10.1111/mmi.15295","DOIUrl":"10.1111/mmi.15295","url":null,"abstract":"<p><p>Endolysins produced by bacteriophages hydrolyze host cell wall peptidoglycan to release newly assembled virions. D29 mycobacteriophage specifically infects mycobacteria including the pathogenic Mycobacterium tuberculosis. D29 encodes LysA endolysin, which hydrolyzes mycobacterial cell wall peptidoglycan. We previously showed that LysA harbors two catalytic domains (N-terminal domain [NTD] and lysozyme-like domain [LD]) and a C-terminal cell wall binding domain (CTD). While the importance of LD and CTD in mycobacteriophage biology has been examined in great detail, NTD has largely remained unexplored. Here, to address NTD's significance in D29 physiology, we generated NTD-deficient D29 (D29<sup>∆NTD</sup>) by deleting the NTD-coding region from D29 genome using CRISPY-BRED. We show that D29<sup>∆NTD</sup> is viable, but has a longer latent period, and a remarkably reduced burst size and plaque size. A large number of phages were found to be trapped in the host during the D29<sup>∆NTD</sup>-mediated cell lysis event. Such poor release of progeny phages during host cell lysis strongly suggests that NTD-deficient LysA produced by D29<sup>∆NTD</sup>, despite having catalytically-active LD, is unable to efficiently lyse host bacteria. We thus conclude that LysA NTD is essential for optimal release of progeny virions, thereby playing an extremely vital role in phage physiology and phage propagation in the environment.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring the role of E. faecalis enterococcal polysaccharide antigen (EPA) and lipoproteins in evasion of phagocytosis. 探索粪肠球菌肠多糖抗原(EPA)和脂蛋白在逃避吞噬作用中的作用。
IF 2.6 2区 生物学
Molecular Microbiology Pub Date : 2024-08-01 Epub Date: 2024-07-12 DOI: 10.1111/mmi.15294
Joshua S Norwood, Jessica L Davis, Bartłomiej Salamaga, Charlotte E Moss, Simon A Johnston, Philip M Elks, Endre Kiss-Toth, Stéphane Mesnage
{"title":"Exploring the role of E. faecalis enterococcal polysaccharide antigen (EPA) and lipoproteins in evasion of phagocytosis.","authors":"Joshua S Norwood, Jessica L Davis, Bartłomiej Salamaga, Charlotte E Moss, Simon A Johnston, Philip M Elks, Endre Kiss-Toth, Stéphane Mesnage","doi":"10.1111/mmi.15294","DOIUrl":"10.1111/mmi.15294","url":null,"abstract":"<p><p>Enterococcus faecalis is an opportunistic pathogen frequently causing nosocomial infections. The virulence of this organism is underpinned by its capacity to evade phagocytosis, allowing dissemination in the host. Immune evasion requires a surface polysaccharide produced by all enterococci, known as the enterococcal polysaccharide antigen (EPA). EPA consists of a cell wall-anchored rhamnose backbone substituted by strain-specific polysaccharides called 'decorations', essential for the biological activity of this polymer. However, the structural determinants required for innate immune evasion remain unknown, partly due to a lack of suitable validated assays. Here, we describe a quantitative, in vitro assay to investigate how EPA decorations alter phagocytosis. Using the E. faecalis model strain OG1RF, we demonstrate that a mutant with a deletion of the locus encoding EPA decorations can be used as a platform strain to express heterologous decorations, thereby providing an experimental system to investigate the inhibition of phagocytosis by strain-specific decorations. We show that the aggregation of cells lacking decorations is increasing phagocytosis and that this process does not involve the recognition of lipoproteins by macrophages. Collectively, our work provides novel insights into innate immune evasion by enterococci and paves the way for further studies to explore the structure/function relationship of EPA decorations.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cortactin: A major cellular target of viral, protozoal, and fungal pathogens. Cortactin:病毒、原生动物和真菌病原体的主要细胞靶标。
IF 2.6 2区 生物学
Molecular Microbiology Pub Date : 2024-08-01 Epub Date: 2024-06-13 DOI: 10.1111/mmi.15284
Irshad Sharafutdinov, Barbara Friedrich, Klemens Rottner, Steffen Backert, Nicole Tegtmeyer
{"title":"Cortactin: A major cellular target of viral, protozoal, and fungal pathogens.","authors":"Irshad Sharafutdinov, Barbara Friedrich, Klemens Rottner, Steffen Backert, Nicole Tegtmeyer","doi":"10.1111/mmi.15284","DOIUrl":"10.1111/mmi.15284","url":null,"abstract":"<p><p>Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental measurement and computational prediction of bacterial Hanks-type Ser/Thr signaling system regulatory targets. 细菌汉克斯型 Ser/Thr 信号系统调控目标的实验测量和计算预测。
IF 2.6 2区 生物学
Molecular Microbiology Pub Date : 2024-08-01 Epub Date: 2024-01-03 DOI: 10.1111/mmi.15220
Noam Grunfeld, Erel Levine, Elizabeth Libby
{"title":"Experimental measurement and computational prediction of bacterial Hanks-type Ser/Thr signaling system regulatory targets.","authors":"Noam Grunfeld, Erel Levine, Elizabeth Libby","doi":"10.1111/mmi.15220","DOIUrl":"10.1111/mmi.15220","url":null,"abstract":"<p><p>Bacteria possess diverse classes of signaling systems that they use to sense and respond to their environments and execute properly timed developmental transitions. One widespread and evolutionarily ancient class of signaling systems are the Hanks-type Ser/Thr kinases, also sometimes termed \"eukaryotic-like\" due to their homology with eukaryotic kinases. In diverse bacterial species, these signaling systems function as critical regulators of general cellular processes such as metabolism, growth and division, developmental transitions such as sporulation, biofilm formation, and virulence, as well as antibiotic tolerance. This multifaceted regulation is due to the ability of a single Hanks-type Ser/Thr kinase to post-translationally modify the activity of multiple proteins, resulting in the coordinated regulation of diverse cellular pathways. However, in part due to their deep integration with cellular physiology, to date, we have a relatively limited understanding of the timing, regulatory hierarchy, the complete list of targets of a given kinase, as well as the potential regulatory overlap between the often multiple kinases present in a single organism. In this review, we discuss experimental methods and curated datasets aimed at elucidating the targets of these signaling pathways and approaches for using these datasets to develop computational models for quantitative predictions of target motifs. We emphasize novel approaches and opportunities for collecting data suitable for the creation of new predictive computational models applicable to diverse species.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139087624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From vacant to vivid: The nutritional landscape drives infant gut microbiota establishment. 从空缺到生动:营养状况推动婴儿肠道微生物群的建立。
IF 2.6 2区 生物学
Molecular Microbiology Pub Date : 2024-07-23 DOI: 10.1111/mmi.15296
Reut Melki, Yael Litvak
{"title":"From vacant to vivid: The nutritional landscape drives infant gut microbiota establishment.","authors":"Reut Melki, Yael Litvak","doi":"10.1111/mmi.15296","DOIUrl":"https://doi.org/10.1111/mmi.15296","url":null,"abstract":"<p><p>From the moment of birth, the newborn gastrointestinal tract is infiltrated by various bacteria originating from both maternal and environmental sources. These colonizing bacteria form a complex microbiota community that undergoes continuous changes until adulthood and plays an important role in infant health. The maturation of the infant gut microbiota is driven by many factors and follows a distinct patterned trajectory, with specific bacterial taxa establish in the intestine in accordance with developmental milestones as the infant grows. In this review, we highlight how elements such as diet and host physiology select for specific microbial functions and shape the composition of the bacterial community in the large intestine.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141752174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Identification, characterization and classification of prokaryotic nucleoid-associated proteins. 原核相关蛋白的鉴定、特征描述和分类。
IF 2.6 2区 生物学
Molecular Microbiology Pub Date : 2024-07-22 DOI: 10.1111/mmi.15298
Samuel Schwab, Remus T Dame
{"title":"Identification, characterization and classification of prokaryotic nucleoid-associated proteins.","authors":"Samuel Schwab, Remus T Dame","doi":"10.1111/mmi.15298","DOIUrl":"https://doi.org/10.1111/mmi.15298","url":null,"abstract":"<p><p>Common throughout life is the need to compact and organize the genome. Possible mechanisms involved in this process include supercoiling, phase separation, charge neutralization, macromolecular crowding, and nucleoid-associated proteins (NAPs). NAPs are special in that they can organize the genome at multiple length scales, and thus are often considered as the architects of the genome. NAPs shape the genome by either bending DNA, wrapping DNA, bridging DNA, or forming nucleoprotein filaments on the DNA. In this mini-review, we discuss recent advancements of unique NAPs with differing architectural properties across the tree of life, including NAPs from bacteria, archaea, and viruses. To help the characterization of NAPs from the ever-increasing number of metagenomes, we recommend a set of cheap and simple in vitro biochemical assays that give unambiguous insights into the architectural properties of NAPs. Finally, we highlight and showcase the usefulness of AlphaFold in the characterization of novel NAPs.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141748620","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信