Dallas R. Fonseca, Leslie A. Day, Kathryn K. Crone, Kyle C. Costa
{"title":"An Extracellular, Ca2+‐Activated Nuclease (EcnA) Mediates Transformation in a Naturally Competent Archaeon","authors":"Dallas R. Fonseca, Leslie A. Day, Kathryn K. Crone, Kyle C. Costa","doi":"10.1111/mmi.15311","DOIUrl":"https://doi.org/10.1111/mmi.15311","url":null,"abstract":"Transformation, the uptake of DNA directly from the environment, is a major driver of gene flow in microbial populations. In bacteria, DNA uptake requires a nuclease that processes dsDNA to ssDNA, which is subsequently transferred into the cell and incorporated into the genome. However, the process of DNA uptake in archaea is still unknown. Previously, we cataloged genes essential to natural transformation in <jats:italic>Methanococcus maripaludis</jats:italic>, but few homologs of bacterial transformation‐associated genes were identified. Here, we characterize one gene, MMJJ_16440 (named here as <jats:italic>ecnA</jats:italic>), to be an extracellular nuclease. We show that EcnA is Ca<jats:sup>2+</jats:sup>‐activated, present on the cell surface, and essential for transformation. While EcnA can degrade several forms of DNA, the highest activity was observed with ssDNA as a substrate. Activity was also observed with circular dsDNA, suggesting that EcnA is an endonuclease. This is the first biochemical characterization of a transformation‐associated protein in a member of the archaeal domain and suggests that both archaeal and bacterial transformation initiate in an analogous fashion.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"54 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nicholas de Mojana di Cologna, Silke Andresen, Sandip Samaddar, Stephanie Archer-Hartmann, Ashley Marie Rogers, Jessica K Kajfasz, Tridib Ganguly, Bruna A Garcia, Irene Saengpet, Alexandra M Peterson, Parastoo Azadi, Christine M Szymanski, José A Lemos, Jacqueline Abranches
{"title":"Post-translational modification by the Pgf glycosylation machinery modulates Streptococcus mutans OMZ175 physiology and virulence.","authors":"Nicholas de Mojana di Cologna, Silke Andresen, Sandip Samaddar, Stephanie Archer-Hartmann, Ashley Marie Rogers, Jessica K Kajfasz, Tridib Ganguly, Bruna A Garcia, Irene Saengpet, Alexandra M Peterson, Parastoo Azadi, Christine M Szymanski, José A Lemos, Jacqueline Abranches","doi":"10.1111/mmi.15190","DOIUrl":"10.1111/mmi.15190","url":null,"abstract":"<p><p>Streptococcus mutans is commonly associated with dental caries and the ability to form biofilms is essential for its pathogenicity. We recently identified the Pgf glycosylation machinery of S. mutans, responsible for the post-translational modification of the surface-associated adhesins Cnm and WapA. Since the four-gene pgf operon (pgfS-pgfM1-pgfE-pgfM2) is part of the S. mutans core genome, we hypothesized that the scope of the Pgf system goes beyond Cnm and WapA glycosylation. In silico analyses and tunicamycin sensitivity assays suggested a functional overlap between the Pgf machinery and the rhamnose-glucose polysaccharide synthesis pathway. Phenotypic characterization of pgf mutants (ΔpgfS, ΔpgfE, ΔpgfM1, ΔpgfM2, and Δpgf) revealed that the Pgf system is important for biofilm formation, surface charge, membrane stability, and survival in human saliva. Moreover, deletion of the entire pgf operon (Δpgf strain) resulted in significantly impaired colonization in a rat oral colonization model. Using Cnm as a model, we showed that Cnm is heavily modified with N-acetyl hexosamines but it becomes heavily phosphorylated with the inactivation of the PgfS glycosyltransferase, suggesting a crosstalk between these two post-translational modification mechanisms. Our results revealed that the Pgf machinery contributes to multiple aspects of S. mutans pathobiology that may go beyond Cnm and WapA glycosylation.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"133-151"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11096274/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136398345","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Construing the function of N-terminal domain of D29 mycobacteriophage LysA endolysin in phage lytic efficiency and proliferation.","authors":"Rutuja Gangakhedkar, Vikas Jain","doi":"10.1111/mmi.15295","DOIUrl":"10.1111/mmi.15295","url":null,"abstract":"<p><p>Endolysins produced by bacteriophages hydrolyze host cell wall peptidoglycan to release newly assembled virions. D29 mycobacteriophage specifically infects mycobacteria including the pathogenic Mycobacterium tuberculosis. D29 encodes LysA endolysin, which hydrolyzes mycobacterial cell wall peptidoglycan. We previously showed that LysA harbors two catalytic domains (N-terminal domain [NTD] and lysozyme-like domain [LD]) and a C-terminal cell wall binding domain (CTD). While the importance of LD and CTD in mycobacteriophage biology has been examined in great detail, NTD has largely remained unexplored. Here, to address NTD's significance in D29 physiology, we generated NTD-deficient D29 (D29<sup>∆NTD</sup>) by deleting the NTD-coding region from D29 genome using CRISPY-BRED. We show that D29<sup>∆NTD</sup> is viable, but has a longer latent period, and a remarkably reduced burst size and plaque size. A large number of phages were found to be trapped in the host during the D29<sup>∆NTD</sup>-mediated cell lysis event. Such poor release of progeny phages during host cell lysis strongly suggests that NTD-deficient LysA produced by D29<sup>∆NTD</sup>, despite having catalytically-active LD, is unable to efficiently lyse host bacteria. We thus conclude that LysA NTD is essential for optimal release of progeny virions, thereby playing an extremely vital role in phage physiology and phage propagation in the environment.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"243-254"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Joshua S Norwood, Jessica L Davis, Bartłomiej Salamaga, Charlotte E Moss, Simon A Johnston, Philip M Elks, Endre Kiss-Toth, Stéphane Mesnage
{"title":"Exploring the role of E. faecalis enterococcal polysaccharide antigen (EPA) and lipoproteins in evasion of phagocytosis.","authors":"Joshua S Norwood, Jessica L Davis, Bartłomiej Salamaga, Charlotte E Moss, Simon A Johnston, Philip M Elks, Endre Kiss-Toth, Stéphane Mesnage","doi":"10.1111/mmi.15294","DOIUrl":"10.1111/mmi.15294","url":null,"abstract":"<p><p>Enterococcus faecalis is an opportunistic pathogen frequently causing nosocomial infections. The virulence of this organism is underpinned by its capacity to evade phagocytosis, allowing dissemination in the host. Immune evasion requires a surface polysaccharide produced by all enterococci, known as the enterococcal polysaccharide antigen (EPA). EPA consists of a cell wall-anchored rhamnose backbone substituted by strain-specific polysaccharides called 'decorations', essential for the biological activity of this polymer. However, the structural determinants required for innate immune evasion remain unknown, partly due to a lack of suitable validated assays. Here, we describe a quantitative, in vitro assay to investigate how EPA decorations alter phagocytosis. Using the E. faecalis model strain OG1RF, we demonstrate that a mutant with a deletion of the locus encoding EPA decorations can be used as a platform strain to express heterologous decorations, thereby providing an experimental system to investigate the inhibition of phagocytosis by strain-specific decorations. We show that the aggregation of cells lacking decorations is increasing phagocytosis and that this process does not involve the recognition of lipoproteins by macrophages. Collectively, our work provides novel insights into innate immune evasion by enterococci and paves the way for further studies to explore the structure/function relationship of EPA decorations.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"230-242"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141590835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irshad Sharafutdinov, Barbara Friedrich, Klemens Rottner, Steffen Backert, Nicole Tegtmeyer
{"title":"Cortactin: A major cellular target of viral, protozoal, and fungal pathogens.","authors":"Irshad Sharafutdinov, Barbara Friedrich, Klemens Rottner, Steffen Backert, Nicole Tegtmeyer","doi":"10.1111/mmi.15284","DOIUrl":"10.1111/mmi.15284","url":null,"abstract":"<p><p>Many viral, protozoal, and fungal pathogens represent major human and animal health problems due to their great potential of causing infectious diseases. Research on these pathogens has contributed substantially to our current understanding of both microbial virulence determinants and host key factors during infection. Countless studies have also shed light on the molecular mechanisms of host-pathogen interactions that are employed by these microbes. For example, actin cytoskeletal dynamics play critical roles in effective adhesion, host cell entry, and intracellular movements of intruding pathogens. Cortactin is an eminent host cell protein that stimulates actin polymerization and signal transduction, and recently emerged as fundamental player during host-pathogen crosstalk. Here we review the important role of cortactin as major target for various prominent viral, protozoal and fungal pathogens in humans, and its role in human disease development and cancer progression. Most if not all of these important classes of pathogens have been reported to hijack cortactin during infection through mediating up- or downregulation of cortactin mRNA and protein expression as well as signaling. In particular, pathogen-induced changes in tyrosine and serine phosphorylation status of cortactin at its major phospho-sites (Y-421, Y-470, Y-486, S-113, S-298, S-405, and S-418) are addressed. As has been reported for various Gram-negative and Gram-positive bacteria, many pathogenic viruses, protozoa, and fungi also control these regulatory phospho-sites, for example, by activating kinases such as Src, PAK, ERK1/2, and PKD, which are known to phosphorylate cortactin. In addition, the recruitment of cortactin and its interaction partners, like the Arp2/3 complex and F-actin, to the contact sites between pathogens and host cells is highlighted, as this plays an important role in the infection process and internalization of several pathogens. However, there are also other ways in which the pathogens can exploit the function of cortactin for their needs, as the cortactin-mediated regulation of cellular processes is complex and involves numerous different interaction partners. Here, the current state of knowledge is summarized.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"165-183"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141311199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental measurement and computational prediction of bacterial Hanks-type Ser/Thr signaling system regulatory targets.","authors":"Noam Grunfeld, Erel Levine, Elizabeth Libby","doi":"10.1111/mmi.15220","DOIUrl":"10.1111/mmi.15220","url":null,"abstract":"<p><p>Bacteria possess diverse classes of signaling systems that they use to sense and respond to their environments and execute properly timed developmental transitions. One widespread and evolutionarily ancient class of signaling systems are the Hanks-type Ser/Thr kinases, also sometimes termed \"eukaryotic-like\" due to their homology with eukaryotic kinases. In diverse bacterial species, these signaling systems function as critical regulators of general cellular processes such as metabolism, growth and division, developmental transitions such as sporulation, biofilm formation, and virulence, as well as antibiotic tolerance. This multifaceted regulation is due to the ability of a single Hanks-type Ser/Thr kinase to post-translationally modify the activity of multiple proteins, resulting in the coordinated regulation of diverse cellular pathways. However, in part due to their deep integration with cellular physiology, to date, we have a relatively limited understanding of the timing, regulatory hierarchy, the complete list of targets of a given kinase, as well as the potential regulatory overlap between the often multiple kinases present in a single organism. In this review, we discuss experimental methods and curated datasets aimed at elucidating the targets of these signaling pathways and approaches for using these datasets to develop computational models for quantitative predictions of target motifs. We emphasize novel approaches and opportunities for collecting data suitable for the creation of new predictive computational models applicable to diverse species.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"152-164"},"PeriodicalIF":2.6,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11219531/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139087624","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Diletta Mazzantini, Guendalina Gherardini, Virginia Rossi, Francesco Celandroni, Marco Calvigioni, Adelaide Panattoni, Mariacristina Massimino, Antonella Lupetti, Emilia Ghelardi
{"title":"Dissecting the role of the MS‐ring protein FliF in Bacillus cereus flagella‐related functions","authors":"Diletta Mazzantini, Guendalina Gherardini, Virginia Rossi, Francesco Celandroni, Marco Calvigioni, Adelaide Panattoni, Mariacristina Massimino, Antonella Lupetti, Emilia Ghelardi","doi":"10.1111/mmi.15299","DOIUrl":"https://doi.org/10.1111/mmi.15299","url":null,"abstract":"The flagellar MS‐ring, uniquely constituted by FliF, is essential for flagellar biogenesis and functionality in several bacteria. The aim of this study was to dissect the role of FliF in the Gram‐positive and peritrichously flagellated <jats:italic>Bacillus cereus</jats:italic>. We demonstrate that <jats:italic>fliF</jats:italic> forms an operon with the upstream gene <jats:italic>fliE</jats:italic>. In silico analysis of <jats:italic>B. cereus</jats:italic> ATCC 14579 FliF identifies functional domains and amino acid residues that are essential for protein functioning. The analysis of a Δ<jats:italic>fliF</jats:italic> mutant of <jats:italic>B. cereus</jats:italic>, constructed in this study using an <jats:italic>in frame</jats:italic> markerless gene replacement method, reveals that the mutant is unexpectedly able to assemble flagella, although in reduced amounts compared to the parental strain. Nevertheless, motility is completely abolished by <jats:italic>fliF</jats:italic> deletion. FliF deprivation causes the production of submerged biofilms and affects the ability of <jats:italic>B. cereus</jats:italic> to adhere to gastrointestinal mucins. We additionally show that the <jats:italic>fliF</jats:italic> deletion does not compromise the secretion of the three components of hemolysin BL, a toxin secreted through the flagellar type III secretion system. Overall, our findings highlight the important role of <jats:italic>B. cereus</jats:italic> FliF in flagella‐related functions, being the protein required for complete flagellation, motility, mucin adhesion, and pellicle biofilms.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"160 1","pages":""},"PeriodicalIF":3.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141730503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Interpreting the role of antioxidants in vivo: A cautionary tale.","authors":"Diana M Downs, Robert K Poole","doi":"10.1111/mmi.15292","DOIUrl":"10.1111/mmi.15292","url":null,"abstract":"<p><p>Bacteria have a remarkable ability to sense environmental stresses and to respond to these stressors by adapting their metabolism and physiology. In recent publications, investigators have suggested that multiple stresses that cause cell death share the mechanistic feature of stimulating the formation of reactive oxygen species (ROS). A central piece of evidence cited in these claims is the ability of exogenous antioxidant compounds to mitigate stress-related cell death. The validity of attributing a positive effect of exogenous antioxidants to ROS-mediated stress is challenged by an important study by Korshunov and Imlay in this issue of Molecular Microbiology. This study reports biochemical data that convincingly show that some commonly used antioxidants quench oxidants orders of magnitude too slowly to have a significant effect on the concentration of ROS in the cell. Under conditions where antioxidants minimize cell death, they also slow growth. Significantly, slowing cell growth by other means has the same restorative effect as adding an antioxidant. Based on the solid biochemical and genetic data, Korshunov and Imlay make the case for discarding the use of antioxidants to diagnose conditions that generate increased internal ROS production.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"129-132"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260230/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141498520","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Antioxidants are ineffective at quenching reactive oxygen species inside bacteria and should not be used to diagnose oxidative stress.","authors":"Sergey Korshunov, James A Imlay","doi":"10.1111/mmi.15286","DOIUrl":"10.1111/mmi.15286","url":null,"abstract":"<p><p>A wide variety of stresses have been proposed to exert killing effects upon bacteria by stimulating the intracellular formation of reactive oxygen species (ROS). A key part of the supporting evidence has often been the ability of antioxidant compounds to protect the cells. In this study, some of the most-used antioxidants-thiourea, glutathione, N-acetylcysteine, and ascorbate-have been examined. Their ability to quench superoxide and hydrogen peroxide was verified in vitro, but the rate constants were orders of magnitude too slow for them to have an impact upon superoxide and peroxide concentrations in vivo, where these species are already scavenged by highly active enzymes. Indeed, the antioxidants were unable to protect the growth and ROS-sensitive enzymes of E. coli strains experiencing authentic oxidative stress. Similar logic posits that antioxidants cannot substantially quench hydroxyl radicals inside cells, which contain abundant biomolecules that react with them at diffusion-limited rates. Indeed, antioxidants were able to protect cells from DNA damage only if they were applied at concentrations that slow metabolism and growth. This protective effect was apparent even under anoxic conditions, when ROS could not possibly be involved, and it was replicated when growth was similarly slowed by other means. Experimenters should discard the use of antioxidants as a way of detecting intracellular oxidative stress and should revisit conclusions that have been based upon such experiments. The notable exception is that these compounds can effectively degrade hydrogen peroxide from environmental sources before it enters cells.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"113-128"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141419951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Bacterial chromatin proteins, transcription, and DNA topology: Inseparable partners in the control of gene expression.","authors":"Christine M Hustmyer, Robert Landick","doi":"10.1111/mmi.15283","DOIUrl":"10.1111/mmi.15283","url":null,"abstract":"<p><p>DNA in bacterial chromosomes is organized into higher-order structures by DNA-binding proteins called nucleoid-associated proteins (NAPs) or bacterial chromatin proteins (BCPs). BCPs often bind to or near DNA loci transcribed by RNA polymerase (RNAP) and can either increase or decrease gene expression. To understand the mechanisms by which BCPs alter transcription, one must consider both steric effects and the topological forces that arise when DNA deviates from its fully relaxed double-helical structure. Transcribing RNAP creates DNA negative (-) supercoils upstream and positive (+) supercoils downstream whenever RNAP and DNA are unable to rotate freely. This (-) and (+) supercoiling generates topological forces that resist forward translocation of DNA through RNAP unless the supercoiling is constrained by BCPs or relieved by topoisomerases. BCPs also may enhance topological stress and overall can either inhibit or aid transcription. Here, we review current understanding of how RNAP, BCPs, and DNA topology interplay to control gene expression.</p>","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":" ","pages":"81-112"},"PeriodicalIF":2.6,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11260248/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141284282","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}