An HWE‐Family Histidine Kinase Modulates Brucella Cell Envelope Properties and Host Innate Immune Response

IF 2.6 2区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
Xingru Chen, Emily Perez, Eleanor C. Scheeres, Rosemary Northcote, Aretha Fiebig, Andrew J. Olive, Sean Crosson
{"title":"An HWE‐Family Histidine Kinase Modulates Brucella Cell Envelope Properties and Host Innate Immune Response","authors":"Xingru Chen, Emily Perez, Eleanor C. Scheeres, Rosemary Northcote, Aretha Fiebig, Andrew J. Olive, Sean Crosson","doi":"10.1111/mmi.70006","DOIUrl":null,"url":null,"abstract":"The bacterial cell envelope is essential for viability and host interaction. In the intracellular pathogen <jats:styled-content style=\"fixed-case\"><jats:italic>Brucella ovis</jats:italic></jats:styled-content>, the orphan HWE‐family histidine kinase PhyK has been implicated in processes that influence cell envelope homeostasis, yet its function remains largely uncharacterized. We show that deletion of <jats:italic>phyK</jats:italic> (∆<jats:italic>phyK</jats:italic>) disrupts cell size control, increases resistance to anionic detergents, enhances sensitivity to cationic envelope disruptors, and triggers broad transcriptional changes, including reduced expression of aerobic respiration genes and increased expression of genes involved in transport and lipid metabolism. This transcriptional profile mirrors that of wild‐type <jats:styled-content style=\"fixed-case\"><jats:italic>B. ovis</jats:italic></jats:styled-content> exposed to an anionic detergent, indicating that loss of PhyK function primes cells to resist this stress. Despite its altered cell envelope properties, the ∆<jats:italic>phyK</jats:italic> mutant exhibits no fitness defect in ex vivo macrophage infection models. However, it elicits a significantly reduced pro‐inflammatory cytokine response in activated murine macrophages compared to the wild‐type strain. We further show that purified PhyK can form multiple stable oligomeric species in solution, reflecting the structural plasticity observed in other HWE‐family kinases and likely contributing to its signaling function in vivo. Our results establish PhyK as a key regulator of <jats:styled-content style=\"fixed-case\"><jats:italic>B. ovis</jats:italic></jats:styled-content> cell envelope properties that can modulate host immune interactions.","PeriodicalId":19006,"journal":{"name":"Molecular Microbiology","volume":"643 1","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/mmi.70006","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The bacterial cell envelope is essential for viability and host interaction. In the intracellular pathogen Brucella ovis, the orphan HWE‐family histidine kinase PhyK has been implicated in processes that influence cell envelope homeostasis, yet its function remains largely uncharacterized. We show that deletion of phyK (∆phyK) disrupts cell size control, increases resistance to anionic detergents, enhances sensitivity to cationic envelope disruptors, and triggers broad transcriptional changes, including reduced expression of aerobic respiration genes and increased expression of genes involved in transport and lipid metabolism. This transcriptional profile mirrors that of wild‐type B. ovis exposed to an anionic detergent, indicating that loss of PhyK function primes cells to resist this stress. Despite its altered cell envelope properties, the ∆phyK mutant exhibits no fitness defect in ex vivo macrophage infection models. However, it elicits a significantly reduced pro‐inflammatory cytokine response in activated murine macrophages compared to the wild‐type strain. We further show that purified PhyK can form multiple stable oligomeric species in solution, reflecting the structural plasticity observed in other HWE‐family kinases and likely contributing to its signaling function in vivo. Our results establish PhyK as a key regulator of B. ovis cell envelope properties that can modulate host immune interactions.
HWE家族组氨酸激酶调节布鲁氏菌细胞包膜特性和宿主先天免疫反应
细菌的细胞包膜是必不可少的生存和宿主相互作用。在细胞内病原体羊布鲁氏菌中,孤儿HWE家族组氨酸激酶PhyK与影响细胞包膜稳态的过程有关,但其功能在很大程度上仍未被表征。我们发现,phyK(∆phyK)的缺失破坏了细胞大小的控制,增加了对阴离子洗涤剂的抵抗力,增强了对阳离子包膜破坏物的敏感性,并引发了广泛的转录变化,包括有氧呼吸基因的表达减少和参与运输和脂质代谢的基因表达增加。这种转录谱反映了暴露于阴离子洗涤剂的野生型b - ovis的转录谱,表明PhyK功能的丧失使细胞能够抵抗这种胁迫。尽管改变了细胞包膜特性,∆phyK突变体在离体巨噬细胞感染模型中没有表现出适应性缺陷。然而,与野生型菌株相比,它在活化的小鼠巨噬细胞中引起的促炎细胞因子反应显着降低。我们进一步证明纯化的PhyK可以在溶液中形成多种稳定的低聚物,反映了在其他HWE家族激酶中观察到的结构可塑性,并可能有助于其在体内的信号功能。我们的研究结果表明,PhyK是一个关键的调控因子,可以调节宿主免疫相互作用的B. ovis细胞包膜特性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Molecular Microbiology
Molecular Microbiology 生物-生化与分子生物学
CiteScore
7.20
自引率
5.60%
发文量
132
审稿时长
1.7 months
期刊介绍: Molecular Microbiology, the leading primary journal in the microbial sciences, publishes molecular studies of Bacteria, Archaea, eukaryotic microorganisms, and their viruses. Research papers should lead to a deeper understanding of the molecular principles underlying basic physiological processes or mechanisms. Appropriate topics include gene expression and regulation, pathogenicity and virulence, physiology and metabolism, synthesis of macromolecules (proteins, nucleic acids, lipids, polysaccharides, etc), cell biology and subcellular organization, membrane biogenesis and function, traffic and transport, cell-cell communication and signalling pathways, evolution and gene transfer. Articles focused on host responses (cellular or immunological) to pathogens or on microbial ecology should be directed to our sister journals Cellular Microbiology and Environmental Microbiology, respectively.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信